In ferroelectroelastic ceramics, the process of fracture is accompanied by significant inelastic deformation due to domain switching. This leads to an apparent toughening of the material, which is known as R-curve behavior. A promising approach to predict R-curves is based on one parameter fracture criteria. The scope of this paper is the examination of the physical validity of these criteria for realistic material behavior. Besides a general discussion of the problem, fracture of the lead zirconate titanate ceramic PIC151 is examined. Thereby, restriction is made to purely mechanical material behavior. The results indicate that the usage of one parameter fracture criteria is questionable. This is due to a conflict between the length scale of the zone wherein the asymptotic crack tip singularity dominates in the field solution of the continuum model and the length scale associated with the fracture process zone. It is concluded that an incorporation of the fracture process into the used fracture mechanics model is necessary to capture transient fracture of ferroelectroelastic ceramics properly.

References

1.
Pisarenko
,
G.
,
Chushko
,
V.
, and
Kovalev
,
S.
,
1985
, “
Anisotropy of Fracture Toughness of Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
,
68
, pp.
259
265
.10.1111/j.1151-2916.1985.tb15319.x
2.
Mehta
,
K.
, and
Virkar
,
A.
,
1990
, “
Fracture Mechanisms in Ferroelectric-Ferroelastic Lead Zirconate Titanate (Zr:Ti = 0.54:0.46) Ceramics
,”
J. Am. Ceram. Soc.
,
73
, pp.
567
574
.10.1111/j.1151-2916.1990.tb06554.x
3.
Zhu
,
T.
, and
Yang
,
W.
,
1997
, “
Toughness Variation of Ferroelectrics by Polarization Switch Under Non-Uniform Electric Field
,”
Acta Mater.
,
45
, pp.
4695
4702
.10.1016/S1359-6454(97)00123-7
4.
Yang
,
W.
, and
Zhu
,
T.
,
1998
, “
Switch Toughening of Ferroelectrics Subjected to Electric Fields
,”
J. Mech. Phys. Solids
,
46
, pp.
291
311
.10.1016/S0022-5096(97)00062-8
5.
Kreher
,
W.
,
2002
, “
Influence of Domain Switching Zones on the Fracture Toughness of Ferroelectrics
,”
J. Mech. Phys. Solids
,
50
, pp.
1029
1050
.10.1016/S0022-5096(01)00110-7
6.
Landis
,
C.
,
2003
, “
On the Fracture Toughness of Ferroelastic Materials
,”
J. Mech. Phys. Solids
,
51
, pp.
1347
1369
.10.1016/S0022-5096(03)00065-6
7.
Landis
,
C.
,
2004
, “
On the Fracture Toughness Anisotropy of Mechanically Poled Ferroelectric Ceramics
,”
Int. J. Fract.
,
126
, pp.
1
16
.10.1023/B:frac.0000025296.90820.52
8.
Wang
,
J.
, and
Landis
,
C.
,
2004
, “
On the Fracture Toughness of Ferroelectric Ceramics With Electric Field Applied Parallel to the Crack Front
,”
Acta Mater.
,
52
, pp.
3435
3446
.10.1016/j.actamat.2004.03.041
9.
Meschke
,
F.
,
Raddatz
,
O.
,
Kolleck
,
A.
, and
Schneider
,
G.
,
2000
, “
R-Curve Behavior and Crack-Closure Stresses in Barium Titanate and (Mg,Y)-PSZ Ceramics
,”
J. Am. Ceram. Soc.
,
83
, pp.
353
361
.10.1111/j.1151-2916.2000.tb01197.x
10.
Kolleck
,
A.
,
Schneider
,
G.
, and
Meschke
,
F.
,
2000
, “
R-Curve Behavior of BaTiO3- and PZT Ceramics Under the Influence of an Electric Field Applied Parallel to the Crack Front
,”
Acta Mater.
,
48
, pp.
4099
4113
.10.1016/S1359-6454(00)00198-1
11.
dos Santos e Lucato
,
S.
,
Lupascu
,
D.
, and
Rödel
,
J.
,
2000
, “
Effect of Poling Direction on R-Curve Behavior in Lead Zirconate Titanate
,”
J. Am. Ceram. Soc.
,
83
, pp.
424
426
.10.1111/j.1151-2916.2000.tb01210.x
12.
Jelitto
,
H.
,
Felten
,
F.
,
Swain
,
M.
,
Balke
,
H.
, and
Schneider
,
G.
,
2007
, “
Measurement of the Total Energy Release Rate for Cracks in PZT Under Combined Mechanical and Electrical Loading
,”
ASME J. Appl. Mech.
,
74
, pp.
1197
1211
.10.1115/1.2744027
13.
McMeeking
,
R.
, and
Evans
,
A.
,
1982
, “
Mechanics of Transformation-Toughening in Brittle Materials
,”
J. Am. Ceram. Soc.
,
65
, pp.
242
246
.10.1111/j.1151-2916.1982.tb10426.x
14.
Budiansky
,
B.
,
Hutchinson
,
J.
, and
Lambropoulos
,
J.
,
1983
, “
Continuum Theory of Dilatant Transformation Toughening in Ceramics
,”
Int. J. Solids Struct.
,
19
, pp.
337
355
.10.1016/0020-7683(83)90031-8
15.
Stam
,
G.
, and
van der Giessen
,
E.
,
1995
, “
Effect of Reversible Phase Transformations on Crack Growth
,”
Mech. Mater.
,
21
, pp.
51
71
.10.1016/0167-6636(94)00074-3
16.
Zhou
,
D.
,
2003
, “
Experimental Investigation of Non-Linear Constitutive Behavior of PZT Piezoceramics
,” Ph.D. thesis, Forschungszentrum Karlsruhe, Karlsruhe, Germany.
17.
Zhou
,
D.
,
Kamlah
,
M.
, and
Munz
,
D.
,
2005
, “
Effects of Bias Fields on the Non-Linear Ferroelastic Behavior of Soft Lead Zirconate Titanate Piezoceramics
,”
J. Am. Ceram. Soc.
,
88
, pp.
867
874
.10.1111/j.1551-2916.2005.00139.x
18.
Zhou
,
D.
,
Kamlah
,
M.
, and
Munz
,
D.
,
2005
, “
Effects of Uniaxial Prestress on the Ferroelectric Hysteretic Response of Soft PZT
,”
J. Eur. Ceram. Soc.
,
25
, pp.
425
432
.10.1016/j.jeurceramsoc.2004.01.016
19.
Zhou
,
D.
,
Wang
,
R.
, and
Kamlah
,
M.
,
2010
, “
Determination of Reversible and Irreversible Contributions to the Polarization and Strain Response of Soft PZT Using the Partial Unloading Method
,”
J. Eur. Ceram. Soc.
,
30
, pp.
2603
2615
.10.1016/j.jeurceramsoc.2010.04.042
20.
Munz
,
D.
,
2007
, “
What Can We Learn From R-Curve Measurements
,”
J. Am. Ceram. Soc.
,
90
, pp.
1
15
.10.1111/j.1551-2916.2006.01447.x
21.
Rice
,
J.
,
1966
, “
An Examination of the Fracture Mechanics Energy Balance From the Point of View of Continuum Mechanics
,”
Proceedings of the 1st International Conference on Fracture, Sendai
, Japan, September 12–17, Vol.
1
,
T.
Yokobori
,
T.
Kawasaki
, and
J.
Swedlow
, eds.,
Japanese Society of Strength and Fracture of Materials
,
Tokyo
, pp.
309
340
.
22.
Erdogan
,
F.
,
2000
, “
Fracture Mechanics
,”
Int. J. Solids Struct.
,
37
, pp.
171
183
.10.1016/S0020-7683(99)00086-4
23.
Hutchinson
,
J.
, and
Evans
,
A.
,
2000
, “
Mechanics of Materials: Top-Down Approaches to Fracture
,”
Acta Mater.
,
48
, pp.
125
135
.10.1016/S1359-6454(99)00291-8
24.
Kamlah
,
M.
,
2001
, “
Ferroelectric and Ferroelastic Piezoceramics—Modeling of Electromechanical Hysteresis Phenomena
,”
Continuum Mech. Thermodyn.
,
13
, pp.
219
268
.10.1007/s001610100052
25.
Landis
,
C.
,
Wang
,
J.
, and
Sheng
,
J.
,
2004
, “
Micro-Electromechanical Determination of the Possible Remanent Strain and Polarization States in Polycrystalline Ferroelectrics and the Implications for Phenomenological Constitutive Theories
,”
J. Intell. Mater. Syst. Struct.
,
15
, pp.
513
525
.10.1177/1045389X04041653
26.
Landis
,
C.
,
2002
, “
Fully Coupled, Multi-Axial, Symmetric Constitutive Laws for Polycrystalline Ferroelectric Ceramics
,”
J. Mech. Phys. Solids
,
50
, pp.
127
152
.10.1016/S0022-5096(01)00021-7
27.
Semenov
,
A.
,
Liskowsky
,
A.
, and
Balke
,
H.
,
2009
, “
Return Mapping Algorithms and Consistent Tangent Operators in Ferroelectroelasticity
,”
Int. J. Numer. Methods Eng.
,
81
, pp.
1298
1340
.10.1002/nme.2728
28.
Landis
,
C.
,
2003
, “
On the Strain Saturation Conditions for Polycrystalline Ferroelastic Materials
,”
ASME J. Appl. Mech.
,
70
, pp.
470
478
.10.1115/1.1600472
29.
Dean
,
R.
, and
Hutchinson
,
J.
,
1980
, “
Quasi-Static Steady Crack Growth in Small Scale Yielding
,”
Fracture Mechanics
,
ASTM International
,
West Conshohocken, PA
, pp.
383
405
.
30.
Hutchinson
,
J. W.
,
1974
, “
On Steady Quasi-Static Crack Growth
,”
Division of Applied Sciences, Harvard University, Cambridge, MA, Report No. DEAP S-8.
31.
Engert
,
A.
,
Neumeister
,
P.
,
Mecklenburg
,
M.
,
Jelitto
,
H.
,
Balke
,
H.
, and
Schneider
,
G.
,
2011
, “
Influence of Small Cyclic and DC Electrical Loads on the Fracture Toughness of Ferroelectric Ceramics
,”
J. Eur. Ceram. Soc.
,
31
, pp.
531
540
.10.1016/j.jeurceramsoc.2010.11.006
32.
Neumeister
,
P.
,
Jurisch
,
M.
,
Jelitto
,
H.
,
Engert
,
A.
,
Schneider
,
G.
, and
Balke
,
H.
,
2013
, “
Effective Permittivity of Air-Filled Cracks in Piezoelectric Ceramics Due to Crack Bridging
,”
Acta Mater.
,
61
, pp.
1061
1069
.10.1016/j.actamat.2012.10.006
You do not currently have access to this content.