Full-scale, 3D, time-dependent aerodynamics modeling and simulation of a Darrieus-type vertical-axis wind turbine (VAWT) is presented. The simulations are performed using a moving-domain finite-element-based ALE-VMS technique augmented with a sliding-interface formulation to handle the rotor-stator interactions present. We simulate a single VAWT using a sequence of meshes with increased resolution to assess the computational requirements for this class of problems. The computational results are in good agreement with experimental data. We also perform a computation of two side-by-side counterrotating VAWTs to illustrate how the ALE-VMS technique may be used for the simulation of multiple turbines placed in arrays.

References

1.
Hau
,
E.
,
2006
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
, 2nd ed.,
Springer
,
Berlin
.
2.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden, CO, Technical Report NREL/TP-500-38060.
3.
Klimas
,
P. C.
,
1982
, “
Darrieus Rotor Aerodynamics
,”
ASME J. Solar Energ. Eng.
,
104
, pp.
102
105
.10.1115/1.3266280
4.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density Via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renew. Sustain. Energ.
,
3
, p.
043104
.10.1063/1.3608170
5.
Takizawa
,
K.
,
Bazilevs
,
Y.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling
,”
Arch. Comput. Meth. Eng.
,
19
, pp.
171
225
.10.1007/s11831-012-9071-3
6.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
ALE-VMS and ST-VMS Methods for Computer Modeling of Wind-Turbine Rotor Aerodynamics and Fluid–Structure Interaction
,”
Math. Models Methods Appl. Sci.
,
22
(
Supp. 02
), p.
1230002
.10.1142/S0218202512300025
7.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Akkerman
, I
.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part I: Geometry Modeling and Aerodynamics
,”
Int. J. Num. Meth. Fluid.
,
65
, pp.
207
235
.10.1002/fld.2400
8.
Hsu
,
M.-C.
,
Akkerman
, I
.
, and
Bazilevs
,
Y.
,
2011
, “
High-Performance Computing of Wind Turbine Aerodynamics Using Isogeometric Analysis
,”
Comput. Fluid.
,
49
, pp.
93
100
.10.1016/j.compfluid.2011.05.002
9.
Hsu
,
M.-C.
,
Akkerman
, I
.
, and
Bazilevs
,
Y.
,
2013
, “
Finite Element Simulation of Wind Turbine Aerodynamics: Validation Study Using NREL Phase VI Experiment
,”
Wind Energy
, (published online).10.1002/we.1599
10.
Hsu
,
M.-C.
,
Akkerman
, I
.
, and
Bazilevs
,
Y.
,
2012
, “
Wind Turbine Aerodynamics Using ALE–VMS: Validation and the Role of Weakly Enforced Boundary Conditions
,”
Comput. Mech.
,
50
, pp.
499
511
.10.1007/s00466-012-0686-x
11.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part II: Fluid–Structure Interaction Modeling With Composite Blades
,”
Int. J. Num. Meth.
,
65
, pp.
236
253
.10.1002/fld.2454
12.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Scott
,
M. A.
,
2012
, “
Isogeometric Fluid–Structure Interaction Analysis With Emphasis on Non-Matching Discretizations, and With Application to Wind Turbines
,”
Comput. Meth. Appl. Mech. Eng.
,
249–252
, pp.
28
41
.10.1016/j.cma.2012.03.028
13.
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2012
, “
Fluid–Structure Interaction Modeling of Wind Turbines: Simulating the Full Machine
,”
Comput. Mech.
,
50
, pp.
821
833
.10.1007/s00466-012-0772-0
14.
Korobenko
,
A.
,
Hsu
,
M.
,
Akkerman
, I
.
,
Tippmann
,
J.
, and
Bazilevs
,
Y.
,
2013
, “
Structural Mechanics Modeling and FSI Simulation of Wind Turbines
,”
Math. Models Methods Appl. Sci.
,
23
, pp.
249
272
.10.1142/S0218202513400034
15.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2008
, “
NURBS-Based Isogeometric Analysis for the Computation of Flows About Rotating Components
,”
Comput. Mech.
,
43
, pp.
143
150
.10.1007/s00466-008-0277-z
16.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics
,”
Comput. Fluid.
,
36
, pp.
12
26
.10.1016/j.compfluid.2005.07.012
17.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
, V
. M.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
196
, pp.
4853
4862
.10.1016/j.cma.2007.06.026
18.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
, V
. M.
, and
Hughes
,
T. J. R.
,
2010
, “
Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows With Weakly Enforced Boundary Conditions on Unstretched Meshes
,”
Comput. Meth. Appl. Mech. Eng.
,
199
, pp.
780
790
.10.1016/j.cma.2008.11.020
19.
Stein
,
P.
,
Hsu
,
M.-C.
,
Bazilevs
,
Y.
, and
Beucke
,
K.
,
2012
, “
Operator- and Template-Based Modeling of Solid Geometry for Isogeometric Analysis With Application to Vertical Axis Wind Turbine Simulation
,”
Comput. Meth. Appl. Mech. Eng.
,
213–216
, pp.
71
83
.10.1016/j.cma.2011.11.008
20.
Scheurich
,
F.
,
Fletcher
,
T.
, and
Brown
,
R.
,
2011
, “
Simulating the Aerodynamic Performance and Wake Dynamics of a Vertical-Axis Wind Turbine
,”
Wind Energy
,
14
, pp.
159
177
.10.1002/we.409
21.
Scheurich
,
F.
, and
Brown
,
R.
,
2013
, “
Modelling the Aerodynamics of Vertical-Axis Wind Turbines in Unsteady Wind Conditions
,”
Wind Energy
,
16
, pp.
91
107
.10.1002/we.532
22.
McLaren
,
K.
,
Tullis
,
S.
, and
Ziada
,
S.
,
2012
, “
Computational Fluid Dynamics Simulation of the Aerodynamics of a High Solidity, Small-Scale Vertical Axis Wind Turbine
,”
Wind Energy
,
15
, pp.
349
361
.10.1002/we.472
23.
Bravo
,
R.
,
Tullis
,
S.
, and
Ziada
,
S.
,
2007
, “
Performance Testing of a Small Vertical-Axis Wind Turbine
,”
Proceedings of the 21st Canadian Congress of Applied Mechanics
(CANCAM07), Toronto, Canada, June 3–7, pp.
470
471
.
24.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian–Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
29
, pp.
329
349
.10.1016/0045-7825(81)90049-9
25.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T.
,
2013
,
Computational Fluid–Structure Interaction: Methods and Applications
,
Wiley
,
Chichester
, UK.
26.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
, pp.
371
375
.10.1115/1.2900803
27.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Meth. Appl. Mech. Eng.
,
190
, pp.
305
319
.10.1016/S0045-7825(00)00203-6
28.
Bazilevs
,
Y.
,
Calo
, V
. M.
,
Hughes
,
T. J. R.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid–Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
, pp.
3
37
.10.1007/s00466-008-0315-x
29.
Tezduyar
,
T. E.
,
1992
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
, pp.
1
44
.10.1016/S0065-2156(08)70153-4
30.
Tezduyar
,
T. E.
,
Behr
,
M.
, and
Liou
,
J.
,
1992
, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space–Time Procedure: I. The Concept and the Preliminary Numerical Tests
,”
Comput. Meth. Appl. Mech. Eng.
,
94
(
3
), pp.
339
351
.10.1016/0045-7825(92)90059-S
31.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Liou
,
J.
,
1992
, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space–Time Procedure: II. Computation of Free-Surface Flows, Two-Liquid Flows, and Flows With Drifting Cylinders
,”
Comput. Meth. Appl. Mech. Eng.
,
94
(
3
), pp.
353
371
.10.1016/0045-7825(92)90060-W
32.
Tezduyar
,
T. E.
,
2003
, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Num. Meth. Fluid.
,
43
, pp.
555
575
.10.1002/fld.505
33.
Tezduyar
,
T. E.
, and
Sathe
,
S.
,
2007
, “
Modeling of Fluid–Structure Interactions With the Space–Time Finite Elements: Solution Techniques
,”
Int. J. Num. Meth. Fluid.
,
54
, pp.
855
900
.10.1002/fld.1430
34.
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2011
, “
Multiscale Space–Time Fluid–Structure Interaction Techniques
,”
Comput. Mech.
,
48
, pp.
247
267
.10.1007/s00466-011-0571-z
35.
Takizawa
,
K.
,
Henicke
,
B.
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2011
, “
Stabilized Space–Time Computation of Wind-Turbine Rotor Aerodynamics
,”
Comput. Mech.
,
48
, pp.
333
344
.10.1007/s00466-011-0589-2
36.
Takizawa
,
K.
,
Henicke
,
B.
,
Montes
,
D.
,
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2011
, “
Numerical-Performance Studies for the Stabilized Space–Time Computation of Wind-Turbine Rotor Aerodynamics
,”
Comput. Mech.
,
48
, pp.
647
657
.10.1007/s00466-011-0614-5
37.
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time Fluid–Structure Interaction Methods
,”
Math. Models Methods Appl. Sci.
,
22
(
Supp. 02
), p.
1230001
.10.1142/S0218202512300013
38.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
,
Kalro
, V
.
, and
Litke
,
M.
,
1996
, “
Flow Simulation and High Performance Computing
,”
Comput. Mech.
,
18
, pp.
397
412
.10.1007/BF00350249
39.
Behr
,
M.
, and
Tezduyar
,
T.
,
1999
, “
The Shear-Slip Mesh Update Method
,”
Comput. Meth. Appl. Mech. Eng.
,
174
, pp.
261
274
.10.1016/S0045-7825(98)00299-0
40.
Behr
,
M.
, and
Tezduyar
,
T.
,
2001
, “
Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems With Rotating Mechanical Components
,”
Comput. Meth. Appl. Mech. Eng.
,
190
, pp.
3189
3200
.10.1016/S0045-7825(00)00388-1
41.
Tezduyar
,
T. E.
,
2001
, “
Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,”
Arch. Comput. Meth. Eng.
,
8
, pp.
83
130
.10.1007/BF02897870
42.
Tezduyar
,
T. E.
,
2007
, “
Finite Elements in Fluids: Special Methods and Enhanced Solution Techniques
,”
Comput. Fluid.
,
36
, pp.
207
223
.10.1016/j.compfluid.2005.02.010
43.
Karypis
,
G.
, and
Kumar
, V
.
,
1999
, “
A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
,”
SIAM J. Sci. Comput.
,
20
, pp.
359
392
.10.1137/S1064827595287997
You do not currently have access to this content.