In the present study, the effective elastic properties of multifunctional carbon nanotube composites are derived due to the agglomeration of straight circular carbon nanotubes dispersed in soft polymer matrices. The agglomeration of CNTs is common due to the size of nanotubes, which is at nanoscales. Furthermore, it has been proved that straight circular CNTs provide higher stiffness and elastic properties than any other shape of the nanofibers. Therefore, in the present study, the agglomeration effect on the effective elastic moduli of the CNT polymer nanocomposites is investigated when circular CNTs are aligned straight as well as distributed randomly in the matrix. The Mori–Tanaka micromechanics theory is adopted to newly derive the expressions for the effective elastic moduli of the CNT composites including the effect of agglomeration. In this direction, analytical expressions are developed to establish the volume fraction relationships for the agglomeration regions with high, and dilute CNT concentrations. The volume of the matrix in which there may not be any CNTs due to agglomeration is also included in the present formulation. The agglomeration volume fractions are subsequently adopted to develop the effective relations of the composites for transverse isotropy and isotropic straight CNTs. The validation of the modeling technique is assessed with results reported, and the variations in the effective properties for high and dilute agglomeration concentrations are investigated.

References

References
1.
Bal
,
S.
, and
Samal
,
S. S.
,
2007
, “
Carbon Nanotubes Reinforced Polymer Composites—A State of the Art
,”
Bull. Mater. Sci.
,
30
, pp.
379
386
.10.1007/s12034-007-0061-2
2.
Shaffer
,
M. S. P.
, and
Windle
,
A. H.
,
1999
, “
Fabrication and Characterization of Carbon Nanotube/Poly(Vinyl Alcohol) Composite
,”
Adv. Mater., (Weinheim, Ger.)
,
11
, pp.
937
941
.10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
3.
Vigolo
,
B.
,
Penicaud
,
A. P.
,
Couloun
,
C.
,
Sauder
,
S.
,
Pailler
,
R.
,
Journet
,
C.
,
Bernier
,
P.
, and
Poulin
,
P.
,
2000
, “
Microscopic Fibers and Ribbons of Carbon Nanotubes
,”
Science
,
290
(
5495
), pp.
1331
1334
.10.1126/science.290.5495.1331
4.
Chopra
,
N. G.
, and
Zettl
,
A.
,
1998
, “
Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube
,”
Solid State Commun.
,
105
, pp.
297
300
.10.1016/S0038-1098(97)10125-9
5.
Kantesh
,
B.
, and
Arvind
,
A.
,
2008
, “
Damping Behavior of Carbon Nanotube Reinforced Aluminum Oxide Coatings by Nanomechanical Dynamic Modulus Mapping
,”
J. Appl. Phys.
,
104
, p.
063517
.10.1063/1.2978185
6.
Han
,
S. J.
, and
Wasserman
,
S. H.
,
2010
, “
Agglomeration and Percolation Network Behavior of Semiconductive Polymer Composites With Carbon Nanotubes
,”
Conference Record of the 2010 IEEE International Symposium
on Electrical Insulation (
ISEI
),
San Diego, CA
, June 6–9, pp.
315
318
.10.1109/ELINSL.2010.5549784
7.
Keshoju
,
K.
, and
Sun
,
L.
,
2009
, “
Mechanical Characterization of Magnetic Nanowire–Polydimethylsiloxane Composites
,”
J. Appl. Phys.
,
105
, p.
023515
.10.1063/1.3068173
8.
Zhu
,
Y. F.
,
Ma
,
C.
,
Zhang
,
W.
,
Zhang
,
R. P.
,
Koratkar
,
N.
, and
Liang
,
J.
,
2009
, “
Alignment of Multiwalled Carbon Nanotubes in Bulk Epoxy Composites Via Electric Field
,”
J. Appl. Phys.
,
105
, p.
054319
.10.1063/1.3080243
9.
Denver
,
H.
,
Heiman
,
T.
,
Martin
,
E.
,
Gupta
,
A.
, and
Borca-Tasciuc
,
D.-A.
,
2009
, “
Fabrication of Polydimethylsiloxane Composites With Nickel Nanoparticle and Nanowire Fillers and Study of Their Mechanical and Magnetic Properties
,”
J. Appl. Phys.
,
106
, p.
064909
.10.1063/1.3224966
10.
Yang
,
F.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Wu
,
G.
,
2006
, “
Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions
,”
J. Appl. Phys.
,
99
, p.
114307
.10.1063/1.2193161
11.
Deng
,
F.
,
Ito
,
M.
,
Noguchi
,
T.
,
Wang
,
L. F.
,
Ueki
,
H.
,
Niihara
,
K. I.
,
Kim
,
Y. A.
,
Endo
,
M.
, and
Zheng
,
Q. S.
,
2011
, “
Elucidation of the Reinforcing Mechanism in Carbon Nanotube/Rubber Nanocomposite
,”
ACS Nano
,
5
, pp.
3858
3866
.10.1021/nn200201u
12.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
,
2003
, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1671
1687
.10.1016/S0266-3538(03)00063-0
13.
Volkov
,
A. N.
,
Simov
,
K. R.
, and
Zhigilei
,
L. V.
,
2008
, “Mesoscopic Model for Simulation of CNT-Based Materials,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE2008
),
Boston, MA
, October 31–November 6,
ASME
Paper No. IMECE2008-68021, pp.
1
11
.10.1115/IMECE2008-68021
14.
Song
,
Y. S.
, and
Youn
,
J. R.
,
2006
, “
Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites
,”
Polymer
,
47
(
5
), pp.
1741
1748
.10.1016/j.polymer.2006.01.013
15.
Wang
,
J.
, and
Pyrz
,
R.
,
2004
, “
Prediction of the Overall Moduli of Layered Silicate-Reinforced Nanocomposites—Part I: Basic Theory and Formulas
,”
Compos. Sci. Technol.
,
64
, pp.
925
934
.10.1016/S0266-3538(03)00024-1
16.
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2006
, “
Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composite
,”
Mech. Mater.
,
38
, pp.
884
907
.10.1016/j.mechmat.2005.06.029
17.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2003
, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites: I. Modulus Predictions Using Effective Nanotube Proper Ties
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1689
1703
.10.1016/S0266-3538(03)00069-1
18.
Shao
,
L. H.
,
Luo
,
R. Y.
,
Bai
,
S. L.
, and
Wang
,
J.
,
2009
, “
Prediction of Effective Moduli of Carbon Nanotube-Reinforced Composites With Waviness and Debonding
,”
Compos. Struct.
,
87
(
3
), pp.
274
281
.10.1016/j.compstruct.2008.02.011
19.
Shi
,
D. L.
,
Feng
,
X. Q.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
, and
Gao
,
H.
,
2004
, “
The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites
,”
J. Eng. Mater. Technol.
,
126
, pp.
250
257
.10.1115/1.1751182
20.
Ji
,
X. Y.
,
Cao
,
Y. P.
, and
Feng
,
X. Q.
,
2010
, “
Micromechanics Prediction of the Effective Elastic Moduli of Graphene Sheet-Reinforced Polymer Nanocomposites
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
4
), p.
045005
.10.1088/0965-0393/18/4/045005
21.
Hammerand
,
D. C.
,
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2007
, “
Computational Micromechanics of Clustering and Interphase Effects in Carbon Nanotube Composites
,”
Mech. Adv. Mater. Struct.
,
14
, pp.
277
294
.10.1080/15376490600817370
22.
Seidel
,
G. D.
,
2007
, “
Micromechanics Modeling of the Multifunctional Nature of Carbon Nanotube-Polymer Nanocomposites
,” Ph.D. thesis, Texas A&M University, College Station, TX.
23.
Jarali
,
C. S.
,
Patil
,
S. F.
,
Pilli
,
S. C.
, and
Lu
,
Y. C.
,
2013
, “
Modeling the Effective Elastic Properties of Nanocomposites With Circular Straight CNT Fibers Reinforced in the Epoxy Matrix
,”
J. Mater. Sci.
,
48
(
8
), pp.
3160
3172
.10.1007/s10853-012-7093-8
24.
Wang
,
X.
,
Yong
,
Z. Z.
,
Li
,
Q. W.
,
Bradford
,
P. D.
,
Liu
,
W.
,
Tucker
,
D. S.
,
Cai
,
W.
,
Wang
,
H.
,
Yuan
,
F. G.
, and
Zhu
,
Y. T.
,
2012
, “
Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites
,”
Mater. Res. Lett.
,
1
(
1
), pp.
1
7
.10.1016/0167-577X(82)90027-1
25.
Jarali
,
C. S.
,
Patil
,
S. F.
, and
Pilli
,
S. C.
,
2013
, “
Hygro-Thermo-Electric Properties of CNT Epoxy Nanocomposites With Agglomeration Effects
,”
Mech. Adv. Mater. Struct.
, (in press).10.1080/15376494.2013.769654
26.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Martinus Nijhoff Publishers
,
Leiden, The Netherlands
.
27.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.10.1016/0022-5096(65)90010-4
28.
Jarali
,
C. S.
,
2012
,
Micromechanics and Modelling of Adaptive Shape Memory Composites
,
Lambert Academic Publishing GmbH
,
Saarbrücken, Germany
.
You do not currently have access to this content.