In this paper, an analytical solution is obtained for the magnetoelastic response of a multilayered and functionally graded cylinder with an embedded dynamic polynomial eigenstrain. The internal core of the cylinder endures a harmonic eigenstrain of cubic polynomial distribution along the radial direction. Both plane strain and plane stress conditions are assumed for the axisymmetric cylinder. The composite cylinder is placed in a constant magnetic field parallel to its axis. The magnetoelastic governing equations are solved exactly and the displacement and stress components are obtained in terms of Bessel, Struve, and Lommel functions. Using the analytical solution for the multilayered, composite cylinder, the magnetoelastic response of a functionally graded cylinder with exponential and power law distribution of material properties is investigated. Finally, the numerical results reveal the effects of external magnetic field, eigenstrain, and nonhomogeneity indices on the magnetoelastic response of the heterogeneous cylinders.

References

References
1.
Guo
,
I.
,
Nie
,
G. H.
, and
Chan
,
C.K.
,
2011
, “
Elliptical Inhomogeneity With Polynomial Eigenstrains Embedded in Orthotropic Materials
,”
Arch. Appl. Mech.
,
81
, pp.
157
170
.10.1007/s00419-009-0399-6
2.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
3.
Walpole
,
L. J.
,
1967
, “
The Elastic Field of an Inclusion in an Anisotropic Medium
,”
Proc. R. Soc. A
,
300
(
1461
), pp.
270
289
.10.1098/rspa.1967.0170
4.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2012
, “
Functionally Graded Material: An Overview
,”
Proceedings of the World Congress on Engineering
,
London
, July 4–6, Vol.
III
, Newswood Limited, Hong Kong.
5.
Reddy
,
J. N.
, and
Chin
,
C. D.
,
1998
, “
Thermomechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
,
21
, pp.
593
626
.10.1080/01495739808956165
6.
Akbarzadeh
,
A. H.
,
Abbasi
,
M.
, and
Eslami
,
M. R.
,
2012
, “
Coupled Thermoelasticity of Functionally Graded Plates Based on Third-Order Shear Deformation Theory
,”
Thin-Walled Struct.
,
53
, pp.
141
155
.10.1016/j.tws.2012.01.009
7.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. A
,
252
(
1271
), pp.
561
569
.10.1098/rspa.1959.0173
8.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
587
590
.10.1115/1.3424140
9.
Mikata
,
Y.
, and
Nemat-Nasser
,
S.
,
1990
, “
Elastic Field Due to a Dynamically Transforming Spherical Inclusion
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
845
849
.10.1115/1.2897650
10.
Ferrari
,
M.
,
1991
, “
Closed-Form Solution for the Composite Sphere Subject to Quadratic Eigenstrains With Radial Symmetry
,”
ASME J. Appl. Mech.
,
58
, pp.
853
855
.10.1115/1.2897277
11.
Mikata
,
Y.
,
1993
, “
Transient Elastic Field Due to a Spherical Dynamic Inclusion With an Arbitrary Time Profile
,”
Q. J. Mech. Appl. Math.
,
46
(
2
), pp.
275
297
.10.1093/qjmam/46.2.275
12.
Wang
,
B.
,
Sun
,
Q.
, and
Xiao
,
Z.
,
1999
, “
On the Dynamic Growth of a Spherical Inclusion With Dilatational Transformation Strain in Infinite Elastic Domain
,”
ASME J. Appl. Mech.
,
66
(
4
), pp.
879
884
.10.1115/1.2791792
13.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
,
2001
, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
3
10
.10.1115/1.1346680
14.
Xiao
,
Z. M.
, and
Luo
,
J.
,
2003
, “
On the Transient Elastic Field for an Expanding Spherical Inclusion in 3-D Solid
,”
Acta Mech.
,
163
, pp.
147
159
.10.1007/s00707-003-0009-6
15.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
, pp.
663
671
.10.1115/1.1781177
16.
Wang
,
G.
,
Li
,
S.
, and
Sauer
,
R.
,
2005
, “
A Circular Inclusion in a Finite Domain II. The Neumann-Eshelby Problem
,”
Acta Mech.
,
179
, pp.
91
110
.10.1007/s00707-005-0236-0
17.
Xu
,
B. X.
, and
Wang
,
M. Z.
,
2007
, “
The Arithmetic Mean Property for Rotational Symmetrical Inclusions With Rotational Symmetrical Eigenstrains
,”
ZAMM
,
87
(
1
), pp.
59
69
.10.1002/zamm.200610296
18.
Yang
,
K. J.
,
Lee
,
K. Y.
, and
Chang
,
J. H.
,
2007
, “
Elastic Analysis for Defects in an Orthotropic Kirchhoff Plate
,”
ASME J. Appl. Mech.
,
74
, pp.
438
446
.10.1115/1.2338051
19.
Nie
,
G. H.
,
Chan
,
C. K.
,
Luo
,
L.
, and
Shin
,
F. G.
,
2009
, “
Non-Uniform Eigenstrain Induced Anti-Plane Stress Field in an Elliptic Inhomogeneity Embedded in Anisotropic Media With a Single Plane of Symmetry
,”
Acta Mech.
,
206
, pp.
23
37
.10.1007/s00707-008-0083-x
20.
Sevostianov
, I
.
, and
Kachanov
,
M.
,
2011
, “
Elastic Fields Generated by Inhomogeneities: Far-Field Asymptotics, Its Shape Dependence and Relation to the Effective Elastic Properties
,”
Int. J. Solid Struct.
,
48
, pp.
2340
2348
.10.1016/j.ijsolstr.2011.04.014
21.
Markenscoff
,
X.
,
2012
, “
The Expanding Spherical Inhomogeneity With Transformation Strain
,”
Int. J. Fract.
,
174
, pp.
41
48
.10.1007/s10704-011-9673-z
22.
Mikata
,
Y.
,
1994
, “
Stress Fields in a Continuous Fiber Composite With a Variable Interphase Under Thermo-Mechanical Loadings
,”
J. Eng. Mater. Technol.
,
116
(
3
), pp.
367
377
.10.1115/1.2904300
23.
Cheng
,
Z. Q.
,
Jemah
,
A. K.
, and
Williams
,
F. W.
,
1996
, “
Theory for Multilayered Anisotropic Plates With Weakened Interfaces
,”
ASME J. Appl. Mech.
,
63
, pp.
1019
1026
.10.1115/1.2787221
24.
Zhong
,
Z.
, and
Meguid
,
S. A.
,
1997
, “
On the Elastic Field of a Spherical Inhomogeneity With an Imperfectly Bonded Interface
,”
J. Elast.
,
46
, pp.
91
113
.10.1023/A:1007342605107
25.
Lu
,
P.
, and
Lee
,
K. H.
,
2002
, “
A Modified Model for the Prediction of Effective Elastic Moduli of Composite Materials
,”
Int. J. Solids Struct.
,
39
, pp.
649
657
.10.1016/S0020-7683(01)00162-7
26.
Wang
,
H. M.
,
2011
, “
Dynamic Electromechanical Behavior of a Triple-Layer Piezoelectric Composite Cylinder With Imperfect Interfaces
,”
Appl. Math. Model.
,
35
, pp.
1765
1781
.10.1016/j.apm.2010.10.008
27.
Akbarzadeh
,
A. H.
, and
Chen
,
Z. T.
,
2012
, “
Magnetoelectroelastic Behavior of Rotating Cylinders Resting on an Elastic Foundation Under Hygrothermal Loading
,”
Smart Mater. Struct.
,
21
,
125013
.10.1088/0964-1726/21/12/125013
28.
Li
,
J. Y.
,
2000
, “
Thermoelastic Behavior of Composites With Functionally Graded Interphase: A Multi-Inclusion Model
,”
Int. J. Solids Struct.
,
37
, pp.
5579
5597
.10.1016/S0020-7683(99)00227-9
29.
Wang
,
X.
,
Pan
,
E.
, and
Roy
,
A. K.
,
2008
, “
A Functionally Graded Plane With a Circular Inclusion Under Uniform Antiplane Eigenstrain
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
014501
.10.1115/1.2745391
30.
Jha
,
D. K.
,
Kant
,
T.
, and
Singh
,
R. K.
,
2013
, “
A Critical Review of Recent Research on Functionally Graded Plates
,”
Compos. Struct.
,
96
, pp.
833
849
.10.1016/j.compstruct.2012.09.001
31.
Akbarzadeh
,
A. H.
, and
Chen
,
Z. T.
,
2013
, “
Hygrothermal Stresses in One-Dimensional Functionally Graded Piezoelectric Media in Constant Magnetic Field
,”
Compos. Struct.
,
97
, pp.
317
331
.10.1016/j.compstruct.2012.09.058
32.
Babaei
,
M. H.
, and
Chen
,
Z. T.
,
2009
, “
Elastic Field of a Composite Cylinder With a Spatially Varying Dynamic Eigenstrain
,”
Meccanica
,
44
, pp.
27
33
.10.1007/s11012-008-9141-7
33.
Kraus
,
J. D.
,
1984
,
Electromagnetics
,
3rd ed.
,
McGraw-Hill Book Company
,
New York
.
34.
Akbarzadeh
,
A. H.
,
Babaei
,
M. H.
, and
Chen
,
Z. T.
,
2011
, “
The Thermo-Electromagnetoelastic Behavior of a Rotating Functionally Graded Piezoelectric Cylinder
,”
Smart Mater. Struct.
,
20
(
6
), p.
065008
.10.1088/0964-1726/20/6/065008
35.
Boresi
,
A. P.
,
Schmidt
,
R. J.
, and
Sidebottom
,
O. M.
,
1993
,
Advanced Mechanics of Materials
,
5th ed.
,
John Wiley & Sons Inc.
,
New York.
36.
Fujimoto
,
T.
, and
Noda
,
N.
,
2000
, “
Crack Propagation in a Functionally Graded Plate Under Thermal Shock
,”
Arch. Appl. Mech.
,
70
, pp.
377
386
.10.1007/s004199900069
37.
Korsunsky
,
A. M.
,
Regino
,
G. M.
, and
Nowell
,
D.
,
2007
, “
Variational Eigenstrain Analysis of Residual Stresses in a Welded Plate
,”
Int. J. Solids Struct.
,
44
, pp.
4574
4591
.10.1016/j.ijsolstr.2006.11.037
38.
Luckhooa
,
H. T.
,
Juna
,
T. S.
, and
Korsunskya
,
A. M.
,
2009
, “
Inverse Eigenstrain Analysis of Residual Stresses in Friction Stir Welds
,”
Procedia Eng.
,
1
, pp.
213
216
.10.1016/j.proeng.2009.06.050
39.
Shao
,
Z. S.
,
2005
, “
Mechanical and Thermal Stresses of a Functionally Graded Circular Hollow Cylinder With Finite Length
,”
Int. J. Press. Vessel Pip.
,
82
, pp.
155
163
.10.1016/j.ijpvp.2004.09.007
40.
Losch
,
J. E.
,
1960
,
Tables of Higher Functions
,
6th ed.
,
McGraw-Hill
,
New York
.
41.
Erdelyi
,
A.
,
1953
,
Higher Transcendental Functions
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.