The recently constructed generalized finite-volume theory for two-dimensional linear elasticity problems on rectangular domains is further extended to make possible simulation of periodic materials with complex microstructures undergoing finite deformations. This is accomplished by embedding the generalized finite-volume theory with newly incorporated finite-deformation features into the 0th order homogenization framework, and introducing parametric mapping to enable efficient mimicking of complex microstructural details without artificial stress concentrations by stepwise approximation of curved surfaces separating adjacent phases. The higher-order displacement field representation within subvolumes of the discretized unit cell microstructure, expressed in terms of elasticity-based surface-averaged kinematic variables, substantially improves interfacial conformability and pointwise traction and nontraction stress continuity between adjacent subvolumes. These features enable application of much larger deformations in comparison with the standard finite-volume direct averaging micromechanics (FVDAM) theory developed for finite-deformation applications by minimizing interfacial interpenetrations through additional kinematic constraints. The theory is constructed in a manner which facilitates systematic specialization through reductions to lower-order versions with the 0th order corresponding to the standard FVDAM theory. Part I presents the theoretical framework. Comparison of predictions by the generalized FVDAM theory with its predecessor, analytical and finite-element results in Part II illustrates the proposed theory's superiority in applications involving very large deformations.

References

1.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Demirdzic
,
I.
,
Martinovic
,
D.
, and
Ivankovic
,
A.
,
1988
, “
Numerical Simulation of Thermomechanical Deformation Processes in a Welded Work-Piece
,”
Zavarivanje
,
31
, pp.
209
219
(in Serbo-Croat).
3.
Fryer
,
Y. D. C.
,
Bailey
,
C.
,
Cross
,
M.
, and
Lai
,
C.-H.
,
1991
, “
A Control Volume Procedure for Solving the Elastic Stress–Strain Equations on an Unstructured Mesh
,”
Appl. Math. Model.
,
15
, pp.
639
645
.10.1016/S0307-904X(09)81010-X
4.
Demirdzic
,
I.
, and
Martinovic
,
D.
,
1993
, “
Finite Volume Method for Thermo-Elastic-Plastic Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
109
, pp.
331
349
.10.1016/0045-7825(93)90085-C
5.
Bailey
,
C.
, and
Cross
,
M.
,
1995
, “
A Finite Volume Procedure to Solve Elastic Solid Mechanics Problems in Three Dimensions on an Unstructured Mesh
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1757
1776
.10.1002/nme.1620381010
6.
Taylor
,
G. A.
,
Bailey
,
C.
, and
Cross
,
M.
,
1995
, “
Solutions of the Elastic/Visco-Plastic Constitutive Equations: A Finite Volume Approach
,”
Appl. Math. Modell.
,
19
, pp.
746
760
.10.1016/0307-904X(95)00093-Y
7.
Wheel
,
M. A.
,
1996
, “
A Finite-Volume Approach to the Stress Analysis of Pressurized Axisymmetric Structures
,”
Int. J. Pressure Vessels Piping
,
68
, pp.
311
317
.10.1016/0308-0161(95)00070-4
8.
Berezovski
,
A.
,
Engelbrecht
,
J.
, and
Maugin
,
G. A.
,
2008
,
Numerical Simulation of Waves and Fronts in Inhomogeneous Solids
, Vol. 62(A),
World Scientific, Hackensack, NJ
.
9.
Cavalcante
,
M. A. A.
,
Pindera
,
M. J.
, and
Khatam
,
H.
,
2012
, “
Finite-Volume Micromechanics of Periodic Materials: Past, Present and Future
,”
Composites, Part B
,
43
(
6
), pp.
2521
2543
.10.1016/j.compositesb.2012.02.006
10.
Cavalcante
,
M. A. A.
, and
Pindera
,
M. J.
,
2012
, “
Generalized Finite-Volume Theory for Elastic Stress Analysis in Solid Mechanics—Part I: Framework
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051006
.10.1115/1.4006805
11.
Cavalcante
,
M. A. A.
, and
Pindera
,
M. J.
,
2012
, “
Generalized Finite-Volume Theory for Elastic Stress Analysis in Solid Mechanics—Part II: Results
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051007
.10.1115/1.4006806
12.
Bansal
,
Y.
, and
Pindera
,
M. J.
,
2003
, “
Efficient Reformulation of the Thermoelastic Higher-Order Theory for FGMs
,”
J. Therm. Stresses
,
26
(
11–12
), pp.
1055
1092
.10.1080/714050872
13.
Zhong
,
Y.
,
Bansal
,
Y.
, and
Pindera
,
M. J.
,
2004
, “
Efficient Reformulation of the Thermal Higher-Order Theory for FGM's With Variable Thermal Conductivity
,”
Int. J. Comput. Eng. Sci.
,
5
(
4
), pp.
795
831
.10.1142/S146587630400268X
14.
Achenbach
,
J. D.
,
1975
,
A Theory of Elasticity with Microstructure for Directionally Reinforced Composites
,
Springer-Verlag
,
New York
.
15.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. J.
,
2007
, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials—Part I: Analysis
,”
ASME J. Appl. Mech.
,
74
(
5
), pp.
935
945
.10.1115/1.2722312
16.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. J.
,
2007
, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials—Part II: Numerical Results
,”
ASME J. Appl. Mech.
,
74
(
5
), pp.
946
957
.10.1115/1.2722313
17.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. J.
,
2008
, “
Computational Aspects of the Parametric Finite-Volume Theory for Functionally Graded Materials
,”
J. Comput. Mater. Sci.
,
44
, pp.
422
438
.10.1016/j.commatsci.2008.04.006
18.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. J.
,
2009
, “
Transient Thermo-Mechanical Analysis of a Layered Cylinder by the Parametric Finite-Volume Theory
,”
J. Therm. Stresses
,
32
(
1
), pp.
112
134
.10.1080/01495730802540783
19.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. J.
,
2011
, “
Transient Finite-Volume Analysis of a Graded Cylindrical Shell Under Thermal Shock Loading
,”
Mech. Adv. Mater. Struct.
18
(
1
), pp.
53
67
.10.1080/15376494.2010.519225
20.
Gattu
,
M.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Pindera
,
M.-J.
,
2008
, “
Parametric Finite-Volume Micromechanics of Uniaxial, Continuously-Reinforced Periodic Materials With Elastic Phases
,”
J. Eng. Mater. Technol.
,
130
(
3
), pp.
31015
31030
.10.1115/1.2931157
21.
Khatam
,
H.
, and
Pindera
,
M. J.
,
2009
, “
Parametric Finite-Volume Micromechanics of Periodic Materials With Elastoplastic Phases
,”
Int. J. Plasticity
,
25
(
7
), pp.
1386
1411
.10.1016/j.ijplas.2008.09.003
22.
Khatam
,
H.
, and
Pindera
,
M. J.
,
2010
, “
Plasticity-Triggered Architectural Effects in Periodic Multilayers With Wavy Microstructures
,”
Int. J. Plasticity
,
26
(
2
), pp.
273
287
.10.1016/j.ijplas.2009.06.002
23.
Khatam
,
H.
,
Chen
,
L.
, and
Pindera
,
M. J.
,
2009
, “
Elastic and Plastic Response of Perforated Plates With Different Porosity Architectures
,”
J. Eng. Mater. Technol.
,
131
(
3
), p.
031015
.10.1115/1.3086405
24.
Bansal
,
Y.
, and
Pindera
,
M. J.
,
2005
, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
,
72
, pp.
177
195
.10.1115/1.1831294
25.
Bansal
,
Y.
, and
Pindera
,
M. J.
,
2006
, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plasticity
,
22
(
5
), pp.
775
825
.10.1016/j.ijplas.2005.04.012
26.
Khatam
,
H.
, and
Pindera
,
M. J.
,
2012
, “
Microstructural Scale Effects in the Nonlinear Elastic Response of Bio-Inspired Wavy Multilayers Undergoing Finite Deformation
,”
Composites, Part B
,
43
(
3
), pp.
869
884
.10.1016/j.compositesb.2011.11.032
27.
Aboudi
,
J.
, and
Pindera
,
M. J.
,
2004
, “
High-Fidelity Micromechanical Modeling of Continuously Reinforced Elastic Multiphase Materials Undergoing Finite Deformations
,”
Math. Mech. Solids
,
9
, pp.
599
628
.10.1177/1081286504038591
28.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North-Holland
,
Amsterdam
.
29.
Sanchez-Palencia
,
E.
,
1980
, Non-Homogeneous Media and Vibration Theory (Lecture Notes in Physics, Vol.
127
),
Springer-Verlag
,
Berlin
.
30.
Charalambakis
,
N.
, and
Murat
,
F.
,
2006
, “
Homogenization of Stratified Thermoviscoplastic Materials
,”
Q. Appl. Math.
,
64
(
2
), pp.
359
399
, available at: http://www.ams.org/journals/qam/2006-64-02/S0033-569X-06-01017-3/
31.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics—A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
, p.
030803
.10.1115/1.4001911
32.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
, pp.
357
372
.10.1016/0022-5096(63)90036-X
33.
Cavalcante
,
M. A. A.
,
Khatam
,
H.
, and
Pindera
,
M. J.
,
2011
, “
Homogenization of Elastic-Plastic Periodic Materials by FVDAM and FEM Approaches—An Assessment
,”
Composites, Part B
,
42
(
6
), pp.
1713
1730
.10.1016/j.compositesb.2011.03.006
You do not currently have access to this content.