In this study, we investigate the modal density of double-walled carbon nanotubes. Emphasis is placed on the effect of the utilized theory. Specifically, we compare the modal density obtained via classical Bernoulli–Euler theory with that obtained by employing the refined Bresse–Timoshenko theory with nonlocal and surface effects taken into account. We show that the effect of refinements is dramatic.

References

1.
Bolotin
,
V. V.
,
1972
, “
Theory of Distribution of Natural Frequencies of Elastic Bodies and Its Application to Random Vibration Problems
,”
Prikl. Mekh.
,
8
(
4
), pp.
3
29
(in Russian).
2.
Courant
,
R.
,
1922
, “
Über diè Schwingungen eingespannter platten (About the Vibrations of Compressed Plates)
,”
Math. Z.
,
15
, pp.
195
200
(in German).10.1007/BF01494393
3.
Miller
,
D. K.
, and
Hart
,
F. D.
,
1970
, “
Modal Density of Thin Circular Cylinders
,” NASA Report No. NCR-897.
4.
Langley
,
R. S.
,
1994
, “
The Modal Density and Mode Count of Thin Cylinders and Curved Panels
,”
J. Sound Vib.
,
169
(
1
), pp.
43
53
.10.1006/jsvi.1994.1005
5.
Elishakoff
,
I.
,
1975
, “
Distribution of Natural Frequencies in Certain Structural Elements
,”
J. Acoust. Soc. Am.
,
57
, pp.
361
369
.10.1121/1.380449
6.
Xie
,
G.
,
Thompason
,
D. J.
, and
Jones
,
C. J. C.
,
2004
, “
Mode Count and Modal Density of Structural Systems: Relationships With Boundary Conditions
,”
J. Sound Vib.
,
274
, pp.
621
651
.10.1016/j.jsv.2003.05.008
7.
Bolotin
,
V. V.
,
1984
,
Random Vibrations of Elastic Bodies
,
Martinus-Nijhoff Publishers, The Hague
,
The Netherlands
.
8.
Elishakoff
,
I.
,
1999
,
Probabilistic Theory of Structures
,
Dover
,
New York
.
9.
Elishakoff
,
I.
,
1998
, “
Wide-Band Random Vibration of Continuous Structures With Associated Effect of Cross-Correlations
,”
Analysis and Estimation of Mechanical Systems
,
W.
Schiehlen
and
W.
Wedig
, eds.,
Springer-Verlag
,
Vienna
, pp.
32
42
.
10.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
, pp.
56
58
.10.1038/354056a0
11.
Feynman
,
R. P.
,
1960
, “
There's Plenty Room at the Bottom
,”
Eng. Sci.
,
23
, pp.
22
36
.
12.
Xu
,
K.-Y.
,
Aifantis
,
E. C.
, and
Yan
,
Y.-H.
,
2008
, “
Vibrations of Double-Walled Carbon Nanotubes With Different Boundary Conditions Between Inner and Outer Tubes
,”
ASME J. Appl. Mech.
,
75
, p.
021013
.10.1115/1.2793133
13.
Elishakoff
, I
.
, and
Pentaras
,
D.
,
2009
, “
Fundamental Natural Frequencies of the Double-Walled Carbon Nanotubes
,”
J. Sound Vib.
,
322
(
4–5
), pp.
652
664
.10.1016/j.jsv.2009.02.037
14.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Miorduchowski
,
A.
,
2002
, “
Noncoaxial Resonance of an Isolated Multiwall Carbon Nanotube
,”
Phys. Rev. B
,
66
, p.
233402
.10.1103/PhysRevB.66.233402
15.
Ece
,
M. C.
, and
Aydoglu
,
M.
,
2007
, “
Nonlocal Effect on Vibration of In-Plane Loaded Double-Walled Carbon Nano-Tubes
,”
Acta Mech.
, pp.
185
195
.10.1007/s00707-006-0417-5
16.
Elishakoff
, I
.
, and
Pentaras
,
D.
,
2009
, “
Natural Frequencies of Carbon Nanotubes Based on Simplified Bresse-Timoshenko Theory
,”
J. Comput. Theor. Nanosci.
,
6
(
7
), pp.
1527
1531
.10.1166/jctn.2009.1206
17.
Elishakoff
, I
.
,
Pentaras
,
D.
,
Dujat
,
K.
,
Versaci
,
C.
,
Muscolino
,
G.
,
Storch
,
J.
,
Bucas
,
S.
,
Challamel
,
N.
,
Natsuki
,
T.
,
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Ghyselinck
,
G.
,
2012
,
Carbon Nanotubes and Nanosensors: Vibrations, Buckling and Ballistic Impact
,
ISTE-Wiley
,
London
.
18.
Sudak
,
L. J.
,
2003
, “
Column Buckling of Multi-Walled Carbon Nanotubes Using Non-Local Continuum Mechanics
,”
J. Appl. Phys.
,
94
, pp.
7281
7287
.10.1063/1.1625437
19.
Elishakoff
, I
.
, and
Soret
,
C.
,
2012
, “
Nonlocal Refined Theory for Nanobeams With Surface Effects
,”
Bull. Georgian Natl. Acad. Sci.
,
6
(
1
), pp.
5
13
.
20.
Challamel
,
N.
,
2011
,
Higher-Order Shear Beam Theories and Enriched Continuum
,”
Mech. Res. Commun.
,
38
(5), pp.
388
392
. 10.1016/j.mechrescom.2011.05.004
21.
“Homework 5 Solutions Determinants of Tridiagonal Matrices
,” University of Cincinnati, retrieved January 20,
2013
, https://math.uc.edu/∼halpern/Appliedlinearalg/Hwapplinalg09/Hw5detertridiagonal.pdf
22.
Hu
,
G. Y.
, and
O'Connell
,
R. F.
,
1996
, “
Analytical Inversion of Symmetric Tridiagonal Matrices
,”
J. Phys. A
,
29
, pp.
1511
1513
.10.1088/0305-4470/29/7/020
23.
Gupta
,
S. S.
,
Bosco
,
F. C.
, and
Batra
,
R. C.
,
2009
, “
Breakdown of Structural Models for Vibrations of Single-Wall Zigzag Carbon Nanotubes
,”
J. Appl. Phys.
,
106
(
6
), p.
063527
.10.1063/1.3232206
You do not currently have access to this content.