Structures made of functionally graded materials have attracted much interest recently. The idea is to create a material that fulfills a specified function in accordance to the identified purpose of structure's utilization. In this study, a semi-inverse problem is posed of determining the needed variation of the axial grading of an inhomogeneous column subjected to a central force, generalizing the ungraded column case. Remarkably, it turns out that for a specific combination of parameters, there could exist three different axially graded columns, that possess the same buckling load. Whereas this fact is not immediately apparent, the proposed formulation leads to the design of the axially graded column in such a manner that the buckling load is not less than a prespecified load. Purpose-oriented design demands columns have at least a prespecified buckling load. To solve the problem, a combined analytical-numerical procedure is developed in this study.

References

1.
Koizumi
,
M.
,
1993
,
Ceramic Transactions, Functionally Gradient Materials
, Vol.
34
,
J. B.
Holt
,
M.
Koizumi
,
T.
Hirai
, and
Z.
Munir
, eds.,
The American Ceramic Society
,
Westerville, OH
, pp.
3
10
.
2.
Suresh
,
S.
, and
Mortensen
,
A.
,
1998
,
Fundamentals of Functionally Graded Materials
,
IOM Communications Ltd.
,
London, UK
.
3.
Ng
,
T. Y.
,
Lam
,
K. Y.
,
Liew
,
K. M.
, and
Reddy
,
J. N.
,
2001
, “
Dynamic Stability Analysis of Functionally Graded Cylindrical Shells Under Periodic Axial Loading
,”
Int. J. Solids Struct.
,
38
(
8
), pp.
1295
1309
.10.1016/S0020-7683(00)00090-1
4.
Javaheri
,
R.
, and
Eslami
,
M. R.
,
2002
, “
Buckling of Functionally Graded Plates Under In-Plane Compressive Loading
,”
ZAMM
,
82
(
4
), pp.
277
283
.10.1002/1521-4001(200204)82:4<277::AID-ZAMM277>3.0.CO;2-Y
5.
Papargyri-Beskou
,
S.
,
Tsepoura
,
K. G.
,
Polyzos
,
D.
, and
Beskos
,
D. E.
,
2003
, “
Bending and Stability of Gradient Elastic Beams
,”
Int. J. Solids Struct.
,
40
(
2
), pp.
385
400
.10.1016/S0020-7683(02)00522-X
6.
Najafizadeh
,
M. M.
, and
Eslami
,
M. R.
,
2002
, “
First-Order-Theory-Based Thermoplastic Stability of Functionally Graded Material Circular Plates
,”
AIAA J.
,
40
(
7
), pp.
1444
1450
.10.2514/2.1807
7.
Najafizadeh
,
M. M.
, and
Eslami
,
M. R.
,
2002
, “
Buckling Analysis of Circular Plates of Functionally Graded Materials Under Uniform Radial Compression
,”
Int. J. Mech. Sci.
,
44
(
12
), pp.
2479
2493
.10.1016/S0020-7403(02)00186-8
8.
Elishakoff
,
I.
,
2005
,
Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions
,
CRC Press
,
Boca Raton, FL
.
9.
Elishahoff
,
I.
,
2000
, “
Resurrection of the Method of Successive Approximations to Yield Closed-Form Solutions for Vibrating Inhomogeneous Beams
,”
J. Sound Vib.
,
234
(
2
), pp.
349
362
.10.1006/jsvi.2000.2827
10.
Elishakoff
,
I.
,
2001
, “
Inverse Buckling Problems for Inhomogeneous Columns
,”
Int. J. Solids Struct.
,
38
(
3
), pp.
457
464
.10.1016/S0020-7683(00)00049-4
11.
Elishakoff
,
I.
, and
Rollot
,
O.
,
1999
, “
New Closed-Form Solutions for Buckling of a Variable Stiffness Column by Mathematics
,”
J. Sound Vib.
,
224
(
1
), pp.
172
182
.10.1006/jsvi.1998.2143
12.
Elishakoff
,
I.
, and
Guedé
,
Z.
,
2001
, “
A Remarkable Nature of the Effect of Boundary Conditions an Closed-Form Solutions for Vibrating Inhomogeneous Bernoulli-Euler Beams
,”
Chaos, Solitons Fractals
,
12
(
4
), pp.
659
704
.10.1016/S0960-0779(00)00009-6
13.
Caliò
,
I.
, and
Elishakoff
,
I.
,
2004
, “
Can a Trigonometric Function Serve Both as the Vibration and the Buckling Mode of an Axially Graded Structure?
,”
Mech. Based Des. Struct. Mach.
,
32
(
4
), pp.
401
421
.10.1081/SME-200028002
14.
Elishakoff
,
I.
, and
Endres
,
J.
,
2005
, “
Extension of Euler's Problem to Axially Graded Columns: 260 Years Later
,”
J. Intelligent Mater. Syst. Struct.
,
16
(
1
), pp.
77
83
.10.1177/1045389X05047598
15.
Elishakoff
,
I.
,
Gentilini
,
C.
, and
Santoro
,
R.
,
2006
, “
Some Conventional and Unconventional Educational Column Stability Problems
,”
Int. J. Struct. Stability and Dyn.
,
6
(
1
), pp.
139
151
.10.1142/S0219455406001861
16.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
, pp.
55
57
.
17.
Gajewski
,
A.
, and
Zyczkowski
,
M.
,
1969
, “
Optimal Shaping of an Elastic Homogeneous Bar Compressed by a Polar Force
,”
Bull. Acad. Pol. Sci., Series Sci. Techniques
,
17
(
10
), p.
479
; Rozpr. Inżyn.17/2, 299 (in Polish).
18.
Mladenov
,
K. A.
, and
Sugiyama
,
Y.
,
1983
, “
Buckling of Elastic Cantilevers Subjected to a Polar Force: Exact Solution
,”
Trans. Jpn. Soc. Aero. Space Sci.
,
26
(
72
), pp.
80
90
.
19.
Sugiyama
,
Y.
,
Mladenov
,
K. A.
, and
Fusayasu
,
K.
,
1983
, “
Stability and Vibration of Elastic Systems Subjected to a Central Force
,”
Reports of the Faculty of Engineering Tottori University Japan
,
14
(
1
), pp.
1
13
.
You do not currently have access to this content.