Recent investigations into surface-energy density of nanomaterials lead to a ripe chance to propose, within the framework of continuum mechanics, a new theory for nanomaterials based on surface-energy density. In contrast to the previous theories, the linearly elastic constitutive relationship that is usually adopted to describe the surface layer of nanomaterials is not invoked and the surface elastic constants are no longer needed in the new theory. Instead, a surface-induced traction to characterize the surface effect in nanomaterials is derived, which depends only on the Eulerian surface-energy density. By considering sample-size effects, residual surface strain, and external loading, an explicit expression for the Lagrangian surface-energy density is achieved and the relationship between the Eulerian surface-energy density and the Lagrangian surface-energy density yields a conclusion that only two material constants—the bulk surface-energy density and the surface-relaxation parameter—are needed in the new elastic theory. The new theory is further used to characterize the elastic properties of several fcc metallic nanofilms under biaxial tension, and the theoretical results agree very well with existing numerical results. Due to the nonlinear surface effect, nanomaterials may exhibit a nonlinearly elastic property though the inside of nanomaterials or the corresponding bulk one is linearly elastic. Moreover, it is found that externally applied loading should be responsible for the softening of the elastic modulus of a nanofilm. In contrast to the surface elastic constants required by existing theories, the bulk surface-energy density and the surface-relaxation parameter are much easy to obtain, which makes the new theory more convenient for practical applications.

References

References
1.
Ibach
,
H.
,
1997
, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
,
29
(
5–6
), pp.
195
263
.10.1016/S0167-5729(97)00010-1
2.
He
,
L. H.
,
Lim
,
C. W.
, and
Wu
,
B. S.
,
2004
, “
A Continuum Model for Size-Dependent Deformation of Elastic Films of Nano-Scale Thickness
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
847
857
.10.1016/j.ijsolstr.2003.10.001
3.
Muller
,
P.
, and
Saul
,
A.
,
2004
, “
Elastic Effects on Surface Physics
,”
Surf. Sci. Rep.
,
54
(
5–8
), pp.
157
258
.10.1016/j.surfrep.2004.05.001
4.
Sander
,
D.
,
2003
, “
Surface Stress: Implications and Measurements
,”
Curr. Opin. Solid State Mater. Sci.
,
7
(
1
), pp.
51
57
.10.1016/S1359-0286(02)00137-7
5.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
11
(
3
), pp.
139
147
.10.1088/0957-4484/11/3/301
6.
Liang
,
L. H.
, and
Li
,
B. W.
,
2006
, “
Size-Dependent Thermal Conductivity of Nanoscale Semiconducting Systems
,”
Phys. Rev. B
,
73
(
15
), p.
153303
.10.1103/PhysRevB.73.153303
7.
He
,
Q. L.
, and
Lilley
,
C. M.
,
2012
, “
Resonant Frequency Analysis of Timoshenko Nanowires With Surface Stress for Different Boundary Conditions
,”
J. Appl. Phys.
,
112
(
7
), p.
074322
.10.1063/1.4757593
8.
Yan
,
Z.
, and
Jiang
,
L. Y.
,
2012
, “
Vibration and Buckling Analysis of a Piezoelectric Nanoplate Considering Surface Effects and In-Plane Constraints
,”
Proc. R. Soc. London A
,
468
(
2147
), pp.
3458
3475
.10.1098/rspa.2012.0214
9.
Hall
,
B. D.
,
Flueli
,
M.
,
Monot
,
R.
, and
Borel
,
J. P.
,
1991
, “
Multiply Twinned Structures in Unsupported Ultrafine Silver Particles Observed by Electron Diffraction
,”
Phys. Rev. B
,
43
(
5
), pp.
3906
3917
.10.1103/PhysRevB.43.3906
10.
Kondo
,
Y.
,
Ru
,
Q.
, and
Takayanagi
,
K.
,
1997
, “
Thickness Induced Structural Phase Transition of Gold Nanofilm
,”
Phys. Rev. Lett.
,
82
(
4
), pp.
751
754
.10.1103/PhysRevLett.82.751
11.
Mikkelsen
,
A.
,
Skold
,
N.
,
Ouattara
,
L.
,
Borgstrom
,
M.
,
Andersen
,
J. N.
,
Samuelson
,
L.
,
Seifert
,
W.
, and
Lundgren
,
E.
,
2004
, “
Direct Imaging of the Atomic Structure Inside a Nanowire by Scanning Tunnelling Microscopy
,”
Nat. Mater.
,
3
(8), pp.
519
523
.10.1038/nmat1164
12.
Hilner
,
E.
,
Lundgren
,
E.
, and
Mikkelsen
,
A.
,
2010
, “
Surface Structure and Morphology of InAs(1 1 1)B With/Without Gold Nanoparticles Annealed Under Arsenic or Atomic Hydrogen Flux
,”
Surf. Sci.
,
604
(
3–4
), pp.
354
360
.10.1016/j.susc.2009.11.029
13.
Cuenot
,
S.
,
Fretigny
,
C.
,
Champagne
,
S. D.
, and
Nysten
,
B.
,
2004
, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,”
Phys. Rev. B
,
69
(
16
), p.
165410
.10.1103/PhysRevB.69.165410
14.
Chen
,
Y. X.
,
Dorgan
,
B. L.
,
Mcllroy
,
D. N.
, and
Aston
,
D. E.
,
2006
, “
On the Importance of Boundary Conditions on Nanomechanical Bending Behavior and Elastic Modulus Determination of Silver Nanowires
,”
J. Appl. Phys.
,
100
(
10
), p.
104301
.10.1063/1.2382265
15.
Jing
,
G. Y.
,
Duan
,
H. L.
,
Sun
,
X. M.
,
Zhang
,
Z. S.
,
Xu
,
J.
,
Li
,
Y. D.
,
Wang
,
J. X.
, and
Yu
,
D. P.
,
2006
, “
Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy
,”
Phys. Rev. B
,
73
(
23
), p.
235409
.10.1103/PhysRevB.73.235409
16.
Gavan
,
K. B.
,
Westra
,
H. J. R.
,
van der Drift
,
E. W. J. M.
,
Venstra
,
W. J.
, and
van der Zant
,
H. S. J.
,
2009
, “
Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy
,”
Appl. Phys. Lett.
,
94
(
23
), p.
233108
.10.1063/1.3152772
17.
Zhu
,
Y.
,
Qin
,
Q. Q.
,
Xu
,
F.
,
Fan
,
F. R.
,
Ding
,
Y.
,
Zhang
,
T.
,
Wiley
,
B. J.
, and
Wang
,
Z. L.
,
2012
, “
Size Effects on Elasticity, Yielding, and Fracture of Silver Nanowires: In Situ Experiments
,”
Phys. Rev. B
,
85
(
4
), p.
045443
.10.1103/PhysRevB.85.045443
18.
Gibbs
,
J. W.
,
1928
,
Collected Works
,
Longmans Green
,
New York
, p.
314
.
19.
Shuttleworth
,
R.
,
1949
, “
The Surface Tension of Solids
,”
Proc. Phys. Soc. A
,
63
(
5
), pp.
444
457
.10.1088/0370-1298/63/5/302
20.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.10.1007/BF00261375
21.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.10.1016/0020-7683(78)90008-2
22.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
An Atomic Interpretation of Interface Stress
,”
Scr. Mater.
,
39
(
12
), pp.
1653
1661
.10.1016/S1359-6462(98)00352-2
23.
Haiss
,
W.
,
2001
, “
Surface Stress of Clean and Adsorbate-Covered Solids
,”
Rep. Prog. Phys.
,
64
(
5
), pp.
591
648
.10.1088/0034-4885/64/5/201
24.
Murdoch
,
A. I.
,
2005
, “
Some Fundamental Aspects of Surface Modelling
,”
J. Elasticity
,
80
(
1–3
), pp.
33
52
.10.1007/s10659-005-9024-2
25.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plane Deformations of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. London, Ser. A
,
453
(
1959
), pp.
853
877
.10.1098/rspa.1997.0047
26.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
.10.1016/j.jmps.2011.06.007
27.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
,
90
(
23
), p.
231904
.10.1063/1.2746950
28.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2009
, “
Surface Effects on Buckling of Nanowires Under Uniaxial Compression
,”
Appl. Phys. Lett.
,
94
(
14
), p.
141913
.10.1063/1.3117505
29.
He
,
J.
, and
Lilley
,
C. M.
,
2008a
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.10.1021/nl0733233
30.
He
,
J.
, and
Lilley
,
C. M.
,
2008b
, “
Surface Stress Effect on Bending Resonance of Nanowires With Different Boundary Conditions
,”
Appl. Phys. Lett.
,
93
(
26
), p.
263108
.10.1063/1.3050108
31.
Song
,
F.
,
Huang
,
G. L.
,
Park
,
H. S.
, and
Liu
,
X. N.
,
2011
, “
A Continuum Model for the Mechanical Behavior of Nanowires Including Surface and Surface-Induced Initial Stresses
,”
Int. J. Solids Struct.
,
48
(
14–15
), pp.
2154
2163
.10.1016/j.ijsolstr.2011.03.021
32.
Lim
,
C. W.
, and
He
,
L. H.
,
2004
, “
Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness
,”
Int. J. Solids Struct.
,
46
(
11
), pp.
1715
1726
.10.1016/j.ijmecsci.2004.09.003
33.
Lu
,
P.
,
He
,
L. H.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2006
, “
Thin Plate Theory Including Surface Effects
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4631
4647
.10.1016/j.ijsolstr.2005.07.036
34.
Huang
,
D. W.
,
2008
, “
Size-Dependent Response of Ultra-Thin Films With Surface Effects
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
568
579
.10.1016/j.ijsolstr.2007.08.006
35.
Lachut
,
M. J.
, and
Sader
,
J. E.
,
2007
, “
Effect of Surface Stress on the Stiffness of Cantilever Plates
,”
Phys. Rev. Lett.
,
99
(
20
), p.
206102
.10.1103/PhysRevLett.99.206102
36.
Dingreville
,
R.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.10.1016/j.jmps.2005.02.012
37.
Dingreville
,
R.
, and
Qu
,
J. M.
,
2008
, “
Interfacial Excess Energy, Excess Stress and Excess Strain in Elastic Solids: Planar Interfaces
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1944
1954
.10.1016/j.jmps.2007.11.003
38.
Huang
,
Z. P.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(
3–4
), pp.
195
210
.10.1007/s00707-005-0286-3
39.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
663
671
.10.1115/1.1781177
40.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.10.1016/j.jmps.2005.02.009
41.
Huang
,
Z. P.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(
1–4
), pp.
151
163
.10.1007/s00707-006-0381-0
42.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
.10.1016/j.jmps.2008.01.001
43.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Grotta
,
A. L.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Transverse Overall Elastic Behavior of Unidirectional Nano-Composites
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
427
434
.10.1016/j.compscitech.2009.11.012
44.
Li
,
P. J.
,
Wang
,
Q. Z.
, and
Shi
,
S. F.
,
2011
, “
Differential Scheme for the Effective Elastic Properties of Nano-Particle Composites With Interface Effect
,”
Comput. Mater. Sci.
,
50
(
11
), pp.
3230
3237
.10.1016/j.commatsci.2011.06.006
45.
Paliwal
,
B.
, and
Cherkaoui
,
M.
,
2011
, “
Atomistic–Continuum Interphase Model for Effective Properties of Composite Materials Containing Nano-Inhomogeneities
,”
Philos. Mag.
,
91
(
30
), pp.
3905
3930
.10.1080/14786435.2011.597361
46.
Paliwal
,
B.
, and
Cherkaoui
,
M.
,
2012
, “
Estimation of Anisotropic Elastic Properties of Nanocomposites Using Atomistic-Continuum Interphase Model
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2424
2438
.10.1016/j.ijsolstr.2012.05.004
47.
Gao
,
X.
,
Huang
,
Z. P.
,
Qu
,
J. M.
, and
Fang
,
D. N.
,
2014
, “
A Curvature-Dependent Interfacial Energy-Based Interface Stress Theory and Its Applications to Nano-Structured Materials: (I) General Theory
,”
J. Mech. Phys. Solids
,
66
, pp.
59
77
.10.1016/j.jmps.2014.01.010
48.
Wang
,
J. X.
,
Huang
,
Z. P.
,
Duan
,
H. L.
,
Yu
,
S. W.
,
Feng
,
X. Q.
,
Wang
,
G. F.
,
Zhang
,
W. X.
, and
Wang
,
T. J.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida. Sin.
,
24
(
1
), pp.
52
82
.10.1016/S0894-9166(11)60009-8
49.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.10.1103/PhysRevB.71.094104
50.
Streitz
,
F. H.
,
Sieradzki
,
K.
, and
Cammarata
,
R. C.
,
1990
, “
Elastic Properties of Thin FCC Films
,”
Phy. Rev. B
,
41
(
17
), pp.
12285
12287
.10.1103/PhysRevB.41.12285
51.
Streitz
,
F. H.
,
Cammarata
,
R. C.
, and
Sieradzki
,
K.
,
1994
, “
Surface-Stress Effects on Elastic Properties. I. Thin Metal Films
,”
Phy. Rev. B.
,
49
(
15
), pp.
10699
10706
.10.1103/PhysRevB.49.10699
52.
Diao
,
J. K.
,
Gall
,
K.
, and
Dunn
,
M. L.
,
2004
, “
Atomistic Simulation of the Structure and Elastic Properties of Gold Nanowires
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1935
1962
.10.1016/j.jmps.2004.03.009
53.
Cao
,
G. X.
, and
Chen
,
X.
,
2008
, “
Size Dependence and Orientation Dependence of Elastic Properties of ZnO Nanofilms
,”
Int. J. Solids Struct.
,
45
(
6
), pp.
1730
1753
.10.1016/j.ijsolstr.2007.10.019
54.
Mi
,
C. W.
,
Jun
,
S.
,
Kouris
,
D. A.
, and
Kim
,
S. Y.
,
2008
, “
Atomistic Calculations of Interface Elastic Properties in Noncoherent Metallic Bilayers
,”
Phys. Rev. B
,
77
(
7
), p.
075425
.10.1103/PhysRevB.77.075425
55.
On
,
B. B.
,
Altus
,
E.
, and
Tadmor
,
E. B.
,
2010
, “
Surface Effects in Non-Uniform Nanobeams: Continuum Versus Atomistic Modeling
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1243
1252
.10.1016/j.ijsolstr.2010.01.010
56.
Pahlevani
,
L.
, and
Shodja
,
H. M.
,
2011
, “
Surface and Interface Effects on Torsion of Eccentrically Two-Phase FCC Circular Nanorods: Determination of the Surface/Interface Elastic Properties Via an Atomistic Approach
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011011
.10.1115/1.4002211
57.
Mohammadi
,
P.
, and
Sharma
,
P.
,
2012
, “
Atomistic Elucidation of the Effect of Surface Roughness on Curvature Dependent Surface Energy, Surface Stress, and Elasticity
,”
Appl. Phys. Lett.
,
100
(
13
), p.
133110
.10.1063/1.3695069
58.
Olsson
,
P. A. T.
, and
Park
,
H. S.
,
2012
, “
On the Importance of Surface Elastic Contributions to the Flexural Rigidity of Nanowires
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
2064
2083
.10.1016/j.jmps.2012.07.009
59.
Gao
,
W.
,
Yu
,
S. W.
, and
Huang
,
G. Y.
,
2006
, “
Finite Element Characterization of the Size-Dependent Mechanical Behaviour in Nanosystems
,”
Nanotechnology
,
17
(
4
), pp.
1118
1122
.10.1088/0957-4484/17/4/045
60.
Park
,
H. S.
, and
Klein
,
P. A.
,
2008
, “
Surface Stress Effects on the Resonant Properties of Metal Nanowires: The Importance of Finite Deformation Kinematics and the Impact of the Residual Surface Stress
,”
J. Mech. Phys. Solids
,
56
(
11
), pp.
3144
4166
.10.1016/j.jmps.2008.08.003
61.
Liu
,
C.
,
Rajapakse
,
R. K. N. D.
, and
Phani
,
A. S.
,
2011
, “
Finite Element Modeling of Beams With Surface Energy Effects
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031014
.10.1115/1.4003363
62.
Sun
,
C. Q.
,
Tay
,
B. K.
,
Zeng
,
X. T.
,
Li
,
S.
,
Chen
,
T. P.
,
Zhou
,
J.
,
Bai
,
H. L.
, and
Jiang
,
E. Y.
,
2002
, “
Bond-Order–Bond-Length–Bond-Strength (Bond-OLS) Correlation Mechanism for the Shape-and-Size Dependence of a Nanosolid
,”
J. Phys.: Condens. Matter
,
14
(
34
), pp.
7781
7795
.10.1088/0953-8984/14/34/301
63.
Sun
,
C. Q.
,
2003
, “
Oxidation Electronics: Bond–Band–Barrier Correlation and Its Applications
,”
Prog. Mater. Sci.
,
48
(
6
), pp.
521
685
.10.1016/S0079-6425(03)00010-0
64.
Ouyang
,
G.
,
Tan
,
X.
, and
Yang
,
G. W.
,
2006
, “
Thermodynamic Model of the Surface Energy of Nanocrystals
,”
Phy. Rev. B
,
74
(
19
), p.
195408
.10.1103/PhysRevB.74.195408
65.
Ouyang
,
G.
,
Li
,
X. L.
,
Tan
,
X.
, and
Yang
,
G. W.
,
2008
, “
Surface Energy of Nanowires
,”
Nanotechnology
,
19
(
4
), p.
045709
.10.1088/0957-4484/19/04/045709
66.
Ouyang
,
G.
,
Wang
,
C. X.
, and
Yang
,
G. W.
,
2009
, “
Surface Energy of Nanostructural Materials With Negative Curvature and Related Size Effects
,”
Chem. Rev.
,
109
(
9
), pp.
4221
4247
.10.1021/cr900055f
67.
Jiang
,
Q.
, and
Lu
,
H. M.
,
2008
, “
Size Dependent Interface Energy and Its Applications
,”
Surf. Sci. Rep.
,
63
(
10
), pp.
427
464
.10.1016/j.surfrep.2008.07.001
68.
Huang
,
Z. P.
,
2002
,
Fundamentals of Continuum Mechanics
,
Higher Education
,
Beijing, China
.
69.
Gazis
,
D. C.
,
Herman
,
R.
, and
Wallis
,
R. F.
,
1960
, “
Surface Elastic Waves in Cubic Crystals
,”
Phys. Rev.
,
119
(
2
), pp.
533
544
.10.1103/PhysRev.119.533
70.
Methfessel
,
M.
,
Hennig
,
D.
, and
Scheffler
,
M.
,
1992
, “
Trends of the Surface Relaxations, Surface Energies, and Work Functions of the 4d Transition Metals
,”
Phys. Rev. B
,
46
(
8
), pp.
4816
4829
.10.1103/PhysRevB.46.4816
71.
Lu
,
H. M.
, and
Jiang
,
Q.
,
2004
, “
Size-Dependent Surface Energies of Nanocrystals
,”
J. Phys. Chem. B
,
108
(
18
), pp.
5617
5619
.10.1021/jp0366264
72.
Liu
,
D.
,
Lian
,
J. S.
, and
Jiang
,
Q.
,
2009
, “
Surface Energy and Electronic Structures of Ag Quasi-Crystal Clusters
,”
J. Phys. Chem. C.
,
113
(
4
), pp.
1168
1170
.10.1021/jp810220f
73.
Jiang
,
Q.
,
Li
,
J. C.
, and
Chi
,
B. Q.
,
2002
, “
Size-Dependent Cohesive Energy of Nanocrystals
,”
Chem. Phys. Lett.
,
366
(
5–6
), pp.
551
554
.10.1016/S0009-2614(02)01641-X
74.
Tolman
,
R. C.
,
1949
, “
The Effect of Droplet Size on Surface Tension
,”
J. Chem. Phys.
,
17
(
3
), pp.
333
337
.10.1063/1.1747247
75.
Jiang
,
Q.
,
Liang
,
L. H.
, and
Zhao
,
D. S.
,
2001
, “
Lattice Contraction and Surface Stress of FCC Nanocrystals
,”
J. Phys. Chem. B
,
105
(
27
), pp.
6275
6277
.10.1021/jp010995n
76.
Chen
,
X. L.
,
Ma
,
H. S.
,
Liang
,
L. H.
, and
Wei
,
Y. G.
,
2009
, “
A Surface Energy Model and Application to Mechanical Behavior Analysis of Single Crystals at Sub-Micron Scale
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
723
727
.10.1016/j.commatsci.2009.03.014
77.
Zhang
,
W. X.
,
Wang
,
T. J.
, and
Chen
,
X.
,
2010
, “
Effect of Surface/Interface Stress on the Plastic Deformation of Nanoporous Materials and Nanocomposites
,”
Int. J. Plast.
,
26
(
7
), pp.
957
975
.10.1016/j.ijplas.2009.12.002
78.
Chen
,
T. Y.
,
Chiu
,
M. S.
, and
Weng
,
C. N.
,
2006
, “
Derivation of the Generalized Young-Laplace Equation of Curved Interfaces in Nanoscaled Solids
,”
J. Appl. Phys.
,
100
(
7
), p.
074308
.10.1063/1.2356094
79.
Liu
,
J. L.
,
Mei
,
Y.
,
Xia
,
R.
, and
Zhu
,
W. L.
,
2012
, “
Large Displacement of a Static Bending Nanowire With Surface Effects
,”
Physica E.
,
44
(
10
), pp.
2050
2055
.10.1016/j.physe.2012.06.009
80.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Phil. Trans. R. Soc. London
,
95
, pp.
65
87
.10.1098/rstl.1805.0005
81.
Jiang
,
Q.
,
Zhao
,
D. S.
, and
Zhao
,
M.
,
2001
, “
Size-Dependent Interface Energy and Related Interface Stress
,”
Acta Mater.
,
49
(
16
), pp.
3143
3147
.10.1016/S1359-6454(01)00232-4
82.
Liang
,
L. H.
,
You
,
X. M.
,
Ma
,
H. S.
, and
Wei
,
Y. G.
,
2010
, “
Interface Energy and Its Influence on Interface Fracture Between Metal and Ceramic Thin Films in Nanoscale
,”
J. Appl. Phys.
,
108
(
8
), p.
084317
.10.1063/1.3501090
83.
Liang
,
H. Y.
,
Upmanyu
,
M.
, and
Huang
,
H. C.
,
2005
, “
Size-Dependent Elasticity of Nanowires: Nonlinear Effects
,”
Phys. Rev. B
,
71
(24), p.
241403
.10.1103/PhysRevB.71.241403
84.
Sheng
,
H. W.
,
Kramer
,
M. J.
,
Cadien
,
A.
,
Fujita
,
T.
, and
Chen
,
M. W.
,
2011
, “
Highly Optimized Embedded-Atom-Method Potentials for Fourteen FCC Metals
,”
Phys. Rev. B
,
83
(
13
), p.
134118
.10.1103/PhysRevB.83.134118
85.
Kittel
,
C.
,
1956
,
Introduction to Solid State Physics
,
Wiley, Inc.
,
New York
, p.
85
.
86.
Tyson
,
W. R.
, and
Miller
,
W. A.
,
1977
, “
Surface Free Energies of Solid Metals: Estimation From Liquid Surface Tension Measurements
,”
Surf. Sci.
,
62
(
1
), pp.
267
276
.10.1016/0039-6028(77)90442-3
87.
Lamber
,
R.
,
Wetjen
,
S.
, and
Jaeger
,
N. I.
,
1995
, “
Size Dependence of the Lattice Parameter of Small Palladium Particles
,”
Phys. Rev. B
,
51
(
16
), pp.
10968
10971
.10.1103/PhysRevB.51.10968
88.
Vitos
,
L.
,
Ruban
,
A. V.
,
Skriver
,
H. L.
, and
Kollar
,
J.
,
1998
, “
The Surface Energy of Metals
,”
Surf. Sci.
,
411
(
1–2
), pp.
186
202
.10.1016/S0039-6028(98)00363-X
89.
Luo
,
W. H.
,
Hu
,
W. Y.
,
Su
,
K. L.
, and
Liu
,
F. S.
,
2013
, “
The Calculation of Surface Free Energy Based on Embedded Atom Method for Solid Nickel
,”
Appl. Surf. Sci.
,
265
(
15
), pp.
375
378
.10.1016/j.apsusc.2012.11.015
You do not currently have access to this content.