Pure substances can often be cooled below their melting points and still remain in the liquid state. For some supercooled liquids, a further cooling slows down viscous flow greatly, but does not slow down self-diffusion as much. We formulate a continuum theory that regards viscous flow and self-diffusion as concurrent, but distinct, processes. We generalize Newton's law of viscosity to relate stress, rate of deformation, and chemical potential. The self-diffusion flux is taken to be proportional to the gradient of chemical potential. The relative rate of viscous flow and self-diffusion defines a length, which, for some supercooled liquids, is much larger than the molecular dimension. A thermodynamic consideration leads to boundary conditions for a surface of liquid under the influence of applied traction and surface energy. We apply the theory to a cavity in a supercooled liquid and identify a transition. A large cavity shrinks by viscous flow, and a small cavity shrinks by self-diffusion.

References

References
1.
Dienes
,
G. J.
, and
Klemm
,
H. F.
,
1946
, “
Theory and Application of the Parallel Plate Plastometer
,”
J. Appl. Phys.
,
17
(
6
), pp.
458
471
.10.1063/1.1707739
2.
Cotts
,
R. M.
,
Hoch
,
M. J. R.
,
Sun
,
T.
, and
Markert
,
J. T.
,
1989
, “
Pulsed Field Gradient Stimulated Echo Methods for Improved NMR Diffusion Measurements in Heterogeneous Systems
,”
J. Magn. Reson.
,
83
(
2
), pp.
252
266
.10.1016/0022-2364(89)90189-3
3.
Smith
,
R. S.
,
Dohnálek
,
Z.
,
Kimmel
,
G. A.
,
Stevenson
,
K. P.
, and
Kay
,
B. D.
,
2000
, “
The Self-Diffusivity of Amorphous Solid Water Near 150 K
,”
Chem. Phys.
,
258
(
2–3
), pp.
291
305
.10.1016/S0301-0104(00)00130-0
4.
Mills
,
P. J.
,
Green
,
P. F.
,
Palmstrøm
,
C. J.
,
Mayer
,
J. W.
, and
Kramer
,
E. J.
,
1984
, “
Analysis of Diffusion in Polymers by Forward Recoil Spectrometry
,”
Appl. Phys. Lett.
,
45
(
9
), pp.
957
959
.10.1063/1.95456
5.
Einstein
,
A.
,
1905
, “
Uber die von der Molekularkinetischen Theorie der Warme Geforderte Bewegung von in Ruhenden Flussigkeiten Suspendierten Teilchen (English translation: On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat)
,”
Investigations on the Theory of the Brownian Movement
,
Dover
,
New York
.
6.
Edward
,
J. T.
,
1970
, “
Molecular Volumes and the Stokes–Einstein Equation
,”
J. Chem. Educ.
,
47
(
4
), pp.
261
270
.10.1021/ed047p261
7.
Borucka
,
A. Z.
,
Bockris
,
J. O'M.
, and
Kitchener
,
J. A.
,
1957
, “
Self-Diffusion in Molten Sodium Chloride: A Test of the Applicability of the Nernst–Einstein Equation
,”
Proc. R. Soc. A
,
241
(
1227
), pp.
554
567
.10.1098/rspa.1957.0146
8.
Ediger
,
M. D.
,
Angell
,
C. A.
, and
Nagel
,
S. R.
,
1996
, “
Supercooled Liquids and Glasses
,”
J. Phys. Chem.
,
100
(
31
), pp.
13200
13212
.10.1021/jp953538d
9.
Rosenfeld
,
D.
, and
Woodley
,
W. L.
,
2000
, “
Deep Convective Clouds With Sustained Supercooled Liquid Water Down to −37.5 °C
,”
Nature
,
405
(
6785
), pp.
440
442
.10.1038/35013030
10.
Shi
,
Z.
,
Debenedetti
,
P. G.
, and
Stillinger
,
F. H.
,
2013
, “
Relaxation Processes in Liquids: Variations on a Theme by Stokes and Einstein
,”
J. Chem. Phys.
,
138
(
12
), p.
12A526
.10.1063/1.4775741
11.
Angell
,
C. A.
,
Ngai
,
K. L.
,
McKenna
,
G. B.
,
McMillan
,
P. F.
, and
Martin
,
S. W.
,
2000
, “
Relaxation in Glassforming Liquids and Amorphous Solids
,”
Appl. Phys. Rev.
,
88
(
6
), pp.
3113
3157
.10.1063/1.1286035
12.
Debenedetti
,
P. G.
, and
Stillinger
,
F. H.
,
2001
, “
Supercooled Liquids and the Glass Transition
,”
Nature
,
410
(
6825
), pp.
259
267
.10.1038/35065704
13.
Mapes
,
M. K.
,
Swallen
,
S. F.
, and
Ediger
,
M. D.
,
2006
, “
Self-Diffusion of Supercooled o-Terphenyl Near the Glass Transition Temperature
,”
J. Phys. Chem. B
,
110
(
1
), pp.
507
511
.10.1021/jp0555955
14.
Swallen
,
S. F.
,
Mapes
,
M. K.
,
Kim
,
Y. S.
,
McMahon
,
R. J.
,
Ediger
,
M. D.
, and
Satija
,
S.
,
2006
, “
Neutron Reflectivity Measurements of the Translational Motion of Tris(Naphthylbenzene) at the Glass Transition Temperature
,”
J. Chem. Phys.
,
124
(
18
), p.
184501
.10.1063/1.2191492
15.
Swallen
,
S. F.
,
Traynor
,
K.
,
McMahon
,
R. J.
,
Ediger
,
M. D.
, and
Mates
,
T. E.
,
2009
, “
Self-Diffusion of Supercooled Tris-Naphthylbenzene
,”
J. Phys. Chem. B
,
113
(
14
), pp.
4600
4608
.10.1021/jp808912e
16.
Fujara
,
F.
,
Geil
,
B.
,
Sillescu
,
H.
, and
Fleischer
,
G.
,
1992
, “
Translational and Rotational Diffusion in Supercooled Orthoterphenyl Close to the Glass Transition
,”
Z. Phys. B Condens. Matter
,
88
(
2
), pp.
195
204
.10.1007/BF01323572
17.
Cavagna
,
A.
,
2009
, “
Supercooled Liquids for Pedestrians
,”
Phys. Rep.
,
476
(
4–6
), pp.
51
124
.10.1016/j.physrep.2009.03.003
18.
Ediger
,
M. D.
, and
Harrowell
,
P.
,
2012
, “
Perspective: Supercooled Liquids and Glasses
,”
J. Chem. Phys.
,
137
(
8
), p.
080901
.10.1063/1.4747326
19.
Ediger
,
M. D.
,
2000
, “
Spatially Heterogeneous Dynamics in Supercooled Liquids
,”
Annu. Rev. Phys. Chem.
,
51
(
1
), pp.
99
128
.10.1146/annurev.physchem.51.1.99
20.
Berthier
,
L.
,
2011
, “
Dynamic Heterogeneity in Amorphous Materials
,”
Physics
,
4
, p.
42
.10.1103/Physics.4.42
21.
Karmakar
,
S.
,
Dasgupta
,
C.
, and
Sastry
,
S.
,
2014
, “
Growing Length Scales and Their Relation to Timescales in Glass-Forming Liquids
,”
Annu. Rev. Condens. Matter Phys.
,
5
(
1
), pp.
255
284
.10.1146/annurev-conmatphys-031113-133848
22.
Sillescu
,
H.
,
Böhmer
,
R.
,
Diezemann
,
G.
, and
Hinze
,
G.
,
2002
, “
Heterogeneity at the Glass Transition: What Do We Know?
J. Non-Cryst. Solids
,
307–310
, pp.
16
23
.10.1016/S0022-3093(02)01435-7
23.
Reinsberg
,
S. A.
,
Qiu
,
X. H.
,
Wilhelm
,
M.
,
Spiess
,
H. W.
, and
Ediger
,
M. D.
,
2001
, “
Length Scale of Heterogeneous Dynamic Heterogeneity in Supercooled Glycerol Near Tg
,”
J. Chem. Phys.
,
114
(
17
), pp.
7299
7302
.10.1063/1.1369160
24.
Qiu
,
X. H.
, and
Ediger
,
M. D.
,
2003
, “
Length Scale of Dynamic Heterogeneity in Supercooled D-Sorbitol: Comparison to Model Predictions
,”
J. Phys. Chem. B
,
107
(
2
), pp.
459
464
.10.1021/jp021888b
25.
Berthier
,
L.
,
Biroli
,
G.
,
Bouchaud
,
J.-P.
,
Cipelletti
,
L.
,
Masri
,
D.
,
L'Hôte
,
D.
,
Ladieu
,
F.
, and
Pierno
,
M.
,
2005
, “
Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition
,”
Science
,
310
(
5755
), pp.
1797
1800
.10.1126/science.1120714
26.
Furukawa
,
A.
, and
Tanaka
,
H.
,
2011
, “
Direct Evidence of Heterogeneous Mechanical Relaxation in Supercooled Liquids
,”
Phys. Rev. E
,
84
(
6
), p.
061503
.10.1103/PhysRevE.84.061503
27.
Furukawa
,
A.
,
2013
, “
Simple Picture of Supercooled Liquid Dynamics: Dynamic Scaling and Phenomenology Based on Clusters
,”
Phys. Rev. E
,
87
(
6
), p.
062321
.10.1103/PhysRevE.87.062321
28.
Yamamoto
,
R.
, and
Onuki
,
A.
,
1998
, “
Heterogeneous Diffusion in Highly Supercooled Liquids
,”
Phys. Rev. Lett.
,
81
(
22
), pp.
4915
4918
.10.1103/PhysRevLett.81.4915
29.
Berthier
,
L.
,
Chandler
,
D.
, and
Garrahan
,
J. P.
,
2005
, “
Length Scale for the Onset of Fickian Diffusion in Supercooled Liquids
,”
Europhys. Lett.
,
69
(
3
), pp.
320
326
.10.1209/epl/i2004-10401-5
30.
Kumar
,
S. K.
,
Szamel
,
G.
, and
Douglas
,
J. F.
,
2006
, “
Nature of the Breakdown in the Stokes–Einstein Relationship in a Hard Sphere Fluid
,”
J. Chem. Phys.
,
124
(
21
), p.
214501
.10.1063/1.2192769
31.
Chang
,
I.
, and
Sillescu
,
H.
,
1997
, “
Heterogeneity at the Glass Transition Translational and Rotational Self-Diffusion
,”
J. Phys. Chem. B
,
101
(
43
), pp.
8794
8801
.10.1021/jp9640989
32.
Swallen
,
S. F.
, and
Ediger
,
M. D.
,
2011
, “
Self-Diffusion of the Amorphous Pharmaceutical Indomethacin Near Tg
,”
Soft Matter
,
7
(
21
), pp.
10339
10344
.10.1039/c1sm06283b
33.
Royal Society of Chemistry
, 2014, “
ChemSpider Online Database
,” Royal Society of Chemistry, Cambridge, UK, http://www.chemspider.com/
34.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University
,
Cambridge, MA
.
35.
Darken
,
L. S.
,
1948
, “
Diffusion, Mobility and Their Interrelation Through Free Energy in Binary Metallic Systems
,”
Trans. AIME
,
175
(1), pp.
184
201
.
36.
Stephenson
,
G. B.
,
1988
, “
Deformation During Interdiffusion
,”
Acta Metall.
,
36
(
10
), pp.
2663
2683
.10.1016/0001-6160(88)90114-9
37.
Suo
,
Z.
,
2004
, “
A Continuum Theory That Couples Creep and Self-Diffusion
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
646
651
.10.1115/1.1781176
38.
Mullins
,
W. W.
,
1959
, “
Flattening of a Nearly Plane Solid Surface Due to Capillarity
,”
J. Appl. Phys.
,
30
(
1
), pp.
77
83
.10.1063/1.1734979
39.
Herring
,
C.
,
1950
, “
Diffusional Viscosity of a Polycrystalline Solid
,”
J. Appl. Phys.
,
21
(
5
), pp.
437
445
.10.1063/1.1699681
40.
Kingery
,
W. D.
,
1959
, “
Surface Tension of Some Liquid Oxides and Their Temperature Coefficients
,”
J. Am. Ceram. Soc.
,
42
(
1
), pp.
6
10
.10.1111/j.1151-2916.1959.tb09134.x
41.
Tracht
,
U.
,
Wilhelm
,
M.
,
Heuer
,
A.
,
Feng
,
H.
,
Schmidt-Rohr
,
K.
, and
Spiess
,
H. W.
,
1998
, “
Length Scale of Dynamic Heterogeneities at the Glass Transition Determined by Multidimensional Nuclear Magnetic Resonance
,”
Phys. Rev. Lett.
,
81
(
13
), pp.
2727
2730
.10.1103/PhysRevLett.81.2727
42.
Graessley
,
W. W.
,
2009
, “
On Dynamic Heterogeneity in Supercooled Liquids
,”
J. Chem. Phys.
,
130
(
16
), p.
164502
.10.1063/1.3119641
43.
Russel
,
E. V.
, and
Israeloff
,
N. E.
,
2000
, “
Direct Observation of Molecular Cooperativity Near the Glass Transition
,”
Nature
,
408
(
6813
), pp.
695
698
.10.1038/35047037
44.
Pharr
,
M.
,
Zhao
,
K.
,
Suo
,
Z.
,
Ouyang
,
F.
, and
Liu
,
P.
,
2011
, “
Concurrent Electromigration and Creep in Lead-Free Solder
,”
J. Appl. Phys.
,
110
(
8
), p.
083716
.10.1063/1.3656002
45.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.10.1063/1.1712886
46.
Hui
,
C. Y.
,
Lin
,
Y. Y.
,
Chuang
,
F. C.
,
Shull
,
K. R.
, and
Lin
,
W. C.
,
2006
, “
A Contact Mechanics Method for Characterizing the Elastic Properties and Permeability of Gels
,”
J. Polym. Sci. Part B Polym. Phys.
,
44
(
2
), pp.
359
370
.10.1002/polb.20613
47.
Galli
,
M.
,
Comley
,
S. C.
,
Shean
,
T. A. V.
, and
Oyen
,
M. L.
,
2009
, “
Viscoelastic and Poroelastic Mechanical Characterization of Hydrated Gels
,”
J. Mater. Res.
,
24
(
3
), pp.
973
979
.10.1557/jmr.2009.0129
48.
Yoon
,
J.
,
Cai
,
S.
,
Suo
,
Z.
, and
Hayward
,
R. C.
,
2010
, “
Poroelastic Swelling Kinetics of Thin Hydrogel Layers: Comparison of Theory and Experiment
,”
Soft Matter
,
6
(
23
), pp.
6004
6012
.10.1039/c0sm00434k
49.
Hu
,
Y.
, and
Suo
,
Z.
,
2012
, “
Viscoelasticity and Poroelasticity in Elastomeric Gels
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
441
458
.10.1016/S0894-9166(12)60039-1
50.
Brassart
,
L.
, and
Suo
,
Z.
,
2013
, “
Reactive Flow in Solids
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
61
77
.10.1016/j.jmps.2012.09.007
51.
Szamel
,
G.
, and
Flenner
,
E.
,
2006
, “
Time Scale for the Onset of Fickian Diffusion in Supercooled Liquids
,”
Phys. Rev. E
,
73
(
1
), p.
011504
.10.1103/PhysRevE.73.011504
You do not currently have access to this content.