Cells are subjected to cyclic loads under physiological conditions, which regulate cellular structures and functions. Recently, it was demonstrated that cells on substrates reoriented nearly perpendicular to the stretch direction in response to uni-axial cyclic stretches. Though various theories were proposed to explain this observation, the underlying mechanism, especially at the molecular level, is still elusive. To provide insights into this intriguing observation, we employ a coupled finite element analysis (FEA) and Monte Carlo method to investigate the stability of a cluster of slip bonds upon cyclic loads. Our simulation results indicate that the cluster can become unstable upon cyclic loads and there exist two characteristic failure modes: gradual sliding with a relatively long lifetime versus catastrophic failure with a relatively short lifetime. We also find that the lifetime of the bond cluster, in many cases, decreases with increasing stretch amplitude and also decreases with increasing cyclic frequency, which appears to saturate at high cyclic frequencies. These results are consistent with the experimental reports. This work suggests the possible role of slip bonds in cellular reorientation upon cyclic stretch.

References

1.
Neidlinger-Wilke
,
C.
,
Wilke
,
H. J.
, and
Claes
,
L.
,
1994
, “
Cyclic Stretching of Human Osteoblasts Affects Proliferation and Metabolism: A New Experimental Method and Its Application
,”
J. Orthop. Res.
,
12
(
1
), pp.
70
78
.10.1002/jor.1100120109
2.
Dartsch
,
P. C.
,
Hammerle
,
H.
, and
Betz
,
E.
,
1986
, “
Orientation of Cultured Arterial Smooth Muscle Cells Growing on Cyclically Stretched Substrates
,”
Acta. Anat. (Basel)
,
125
(
2
), pp.
108
113
.10.1159/000146146
3.
Kanda
,
K.
, and
Matsuda
,
T.
,
1993
, “
Behavior of Arterial Wall Cells Cultured on Periodically Stretched Substrates
,”
Cell Transplant
,
2
(
6
), pp.
475
484
.
4.
Wang
,
H.
,
Ip
,
W.
,
Boissy
,
R.
, and
Grood
,
E. S.
,
1995
, “
Cell Orientation Response to Cyclically Deformed Substrates: Experimental Validation of a Cell Model
,”
J. Biomech.
,
28
(
12
), pp.
1543
1552
.10.1016/0021-9290(95)00101-8
5.
Kemkemer
,
R.
,
Neidlinger-Wilke
,
C.
,
Claes
,
L.
, and
Gruler
,
H.
,
1999
, “
Cell Orientation Induced by Extracellular Signals
,”
Cell Biochem. Biophys.
,
30
(2), pp.
167
192
.10.1007/BF02738066
6.
Greiner
,
A. M.
,
Chen
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
,
2013
, “
Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells
,”
PLoS One
,
8
(
10
), p.
e77328
.10.1371/journal.pone.0077328
7.
Wang
,
J. H.
,
Goldschmidt-Clermont
,
P.
,
Wille
,
J.
, and
Yin
,
F. C.
,
2001
, “
Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching
,”
J. Biomech.
,
34
(
12
), pp.
1563
1572
.10.1016/S0021-9290(01)00150-6
8.
Kaspar
,
D.
,
Seidl
,
W.
,
Neidlinger-Wilke
,
C.
,
Beck
,
A.
,
Claes
,
L.
, and
Ignatius
,
A.
,
2002
, “
Proliferation of Human-Derived Osteoblast-Like Cells Depends on the Cycle Number and Frequency of Uniaxial Strain
,”
J. Biomech.
,
35
(
7
), pp.
873
880
.10.1016/S0021-9290(02)00058-1
9.
Liu
,
B.
,
Qu
,
M. J.
,
Qin
,
K. R.
,
Li
,
H.
,
Li
,
Z. K.
,
Shen
,
B. R.
, and
Jiang
,
Z. L.
,
2008
, “
Role of Cyclic Strain Frequency in Regulating the Alignment of Vascular Smooth Muscle Cells In Vitro
,”
J. Biophys.
,
94
(
4
), pp.
1497
1507
.10.1529/biophysj.106.098574
10.
Jungbauer
,
S.
,
Gao
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
,
2008
, “
Two Characteristic Regimes in Frequency-Dependent Dynamic Reorientation of Fibroblasts on Cyclically Stretched Substrates
,”
J. Biophys.
,
95
(
7
), pp.
3470
3478
.10.1529/biophysj.107.128611
11.
Iba
,
T.
, and
Sumpio
,
B. E.
,
1991
, “
Morphological Response of Human Endothelial Cells Subjected to Cyclic Strain In Vitro
,”
Microvasc. Res.
,
42
(
3
), pp.
245
254
.10.1016/0026-2862(91)90059-K
12.
Hayakawa
,
K.
,
Sato
,
N.
, and
Obinata
,
T.
,
2001
, “
Dynamic Reorientation of Cultured Cells and Stress Fibers Under Mechanical Stress From Periodic Stretching
,”
Exp. Cell Res.
,
268
(
1
), pp.
104
114
.10.1006/excr.2001.5270
13.
Dartsch
,
P. C.
, and
Betz
,
E.
,
1989
, “
Response of Cultured Endothelial Cells to Mechanical Stimulation
,”
Basic Res. Cardiol.
,
84
(
3
), pp.
268
281
.10.1007/BF01907974
14.
Buck
,
R. C.
,
1980
, “
Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum
,”
Exp. Cell Res.
,
127
(
2
), pp.
470
474
.10.1016/0014-4827(80)90456-5
15.
Neidlinger-Wilke
,
C.
,
Grood
,
E. S.
,
Wang
,
J. C.
,
Brand
,
R. A.
, and
Claes
,
L.
,
2001
, “
Cell Alignment is Induced by Cyclic Changes in Cell Length: Studies of Cells Grown in Cyclically Stretched Substrates
,”
J. Orthop. Res.
,
19
(
2
), pp.
286
293
.10.1016/S0736-0266(00)00029-2
16.
De.
,
R.
,
Zemel
,
A.
, and
Safran
,
S. A.
,
2007
, “
Dynamics of Cell Orientation
,”
Nat. Phys.
,
3
(9), pp.
655
659
.10.1038/nphys680
17.
Wei
,
Z.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2008
, “
Analysis and Interpretation of Stress Fiber Organization in Cells Subject to Cyclic Stretch
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031009
.10.1115/1.2907745
18.
Kaunas
,
R.
,
Hsu
,
H.
, and
Deguchi
,
S.
,
2011
, “
Sarcomeric Model of Stretch-Induced Stress Fiber Reorganization
,”
Cell Health Cytoskeleton
,
3
, pp.
13
22
10.2147/CHC.S14984.
19.
Goldyn
,
A. M.
,
Rioja
,
B. A.
,
Spatz
,
J. P.
,
Ballestrem
,
C.
, and
Kemkemer
,
R.
,
2009
, “
Force–Induced Cell Polarization is Linked to RhoA-Driven Microtubule-Independent Focal-Adhesion Sliding
,”
J. Cell Sci.
,
122
(20), pp.
3644
3651
.10.1242/jcs.054866
20.
Chen
,
B.
,
Kemkemer
,
R.
,
Deibler
,
M.
,
Spatz
,
J.
, and
Gao
,
H.
,
2012
, “
Cyclic Stretch Induces Cell Reorientation on Substrates by Destabilizing Catch Bonds in Focal Adhesions
,”
PLoS One
,
7
(
11
), p.
e48346
.10.1371/journal.pone.0048346
21.
Thomas
,
W
.,
2008
, “
Catch Bonds in Adhesion
,”
Annu. Rev. Biomed. Eng.
,
10
(1), pp.
39
57
.10.1146/annurev.bioeng.10.061807.160427
22.
Thomas
,
W. E.
,
Vogel
,
V.
, and
Sokurenko
,
E.
,
2008
, “
Biophysics of Catch Bonds
,”
Annu. Rev. Biophys.
,
37
(1), pp.
399
416
.10.1146/annurev.biophys.37.032807.125804
23.
Kong
,
F.
,
Garcia
,
A. J.
,
Mould
,
A. P.
,
Humphries
,
M. J.
, and
Zhu
,
C.
,
2009
, “
Demonstration of Catch Bonds Between an Integrin and Its Ligand
,”
J. Cell Biol.
,
185
(
7
), pp.
1275
1284
.10.1083/jcb.200810002
24.
Kong
,
F.
,
Li
,
Z.
,
Parks
,
W. M.
,
Dumbauld
,
D. W.
,
Garcia
,
A. J.
,
Mould
,
A. P.
,
Humphries
,
M. J.
, and
Zhu
,
C.
,
2013
, “
Cyclic Mechanical Reinforcement of Integrin–Ligand Interactions
,”
Mol. Cell
,
49
(
6
), pp.
1060
1068
.10.1016/j.molcel.2013.03.008
25.
Bell
,
G. I.
,
1978
, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.10.1126/science.347575
26.
Chen
,
B.
, and
Gao
,
H.
,
2010
, “
Mechanical Principle of Enhancing Cell–Substrate Adhesion Via Pre-Tension in the Cytoskeleton
,”
Biophys. J.
,
98
(
10
), pp.
2154
2162
.10.1016/j.bpj.2010.02.007
27.
Erdmann
,
T.
, and
Schwarz
,
U. S.
,
2006
, “
Bistability of Cell-Matrix Adhesions Resulting From Nonlinear Receptor-Ligand Dynamics
,”
J. Biophys.
,
91
(
6
), pp.
L60
L62
.10.1529/biophysj.106.090209
28.
Filippov
,
A. E.
,
Klafter
,
J.
, and
Urbakh
,
M.
,
2004
, “
Friction Through Dynamical Formation and Rupture of Molecular Bonds
,”
Phys. Rev. Lett.
,
92
(13), p.
135503
.10.1103/PhysRevLett.92.135503
29.
Kong
,
D.
,
Ji
,
B.
, and
Dai
,
L.
,
2008
, “
Stability of Adhesion Clusters and Cell Reorientation Under Lateral Cyclic Tension
,”
J. Biophys.
,
95
(
8
), pp.
4034
4044
.10.1529/biophysj.108.131342
30.
Lawrence
,
M. B.
, and
Springer
,
T. A.
,
1991
, “
Leukocytes Roll on a Selectin at Physiologic Flow Rates: Distinction From and Prerequisite for Adhesion Through Integrins
,”
Cell
,
65
(
5
), pp.
859
873
.10.1016/0092-8674(91)90393-D
31.
Rinko
,
L. J.
,
Lawrence
,
M. B.
, and
Guilford
,
W. H.
,
2004
, “
The Molecular Mechanics of P- and L-Selectin Lectin Domains Binding to PSGL-1
,”
J. Biophys.
,
86
(
1
), pp.
544
554
.10.1016/S0006-3495(04)74133-8
32.
Gao
,
H.
,
Qian
,
J.
, and
Chen
,
B.
,
2011
, “
Probing Mechanical Principles of Focal Contacts in Cell-Matrix Adhesion in a Coupled Stochastic-Elastic Modeling Framework
,”
J. R. Soc. Interface
,
8
(
62
), pp.
1217
1232
.10.1098/rsif.2011.0157
33.
Prados
,
A.
,
Brey
,
J. J.
, and
Sánchez-Rey
,
B.
,
1997
, “
A Dynamical Monte Carlo Algorithm for Master Equations With Time-Dependent Transition Rates
,”
J. Stat. Phys.
,
89
(
3–4
), pp.
709
734
.10.1007/BF02765541
34.
Deguchi
,
S.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2006
, “
Tensile Properties of Single Stress Fibers Isolated From Cultured Vascular Smooth Muscle Cells
,”
J. Biomech.
,
39
(
14
), pp.
2603
2610
.10.1016/j.jbiomech.2005.08.026
35.
Evans
,
E.
, and
Ritchie
,
K.
,
1997
, “
Dynamic Strength of Molecular Adhesion Bonds
,”
J. Biophys.
,
72
(
4
), pp.
1541
1555
.10.1016/S0006-3495(97)78802-7
36.
Seifert
,
U
.,
2000
, “
Rupture of Multiple Parallel Molecular Bonds Under Dynamic Loading
,”
Phys. Rev. Lett.
,
84
(12), pp.
2750
2753
.10.1103/PhysRevLett.84.2750
37.
Erdmann
,
T.
, and
Schwarz
,
U. S.
,
2004
, “
Stability of Adhesion Clusters Under Constant Force
,”
Phys. Rev. Lett.
,
92
(10), p.
108102
.10.1103/PhysRevLett.92.108102
38.
Erdmann
,
T.
, and
Schwarz
,
U. S.
,
2004
, “
Stochastic Dynamics of Adhesion Clusters Under Shared Constant Force and With Rebinding
,”
J. Chem. Phys.
,
121
(
18
), pp.
8997
9017
.10.1063/1.1805496
39.
Roca-Cusachs
,
P.
,
Gauthier
,
N. C.
,
Rio
,
A.
, and
Sheetz
,
M. P.
,
2009
, “
Clustering of α5β1 Integrins Determines Adhesion Strength Whereas αvβ3 and Talin Enable Mechanotransduction
,”
Proc. Natl. Acad. Sci.
,
106
(
38
), pp.
16245
16250
.10.1073/pnas.0902818106
40.
Dembo
,
M.
,
Torney
,
D. C.
,
Saxman
,
K.
, and
Hammer
,
D.
,
1988
, “
The Reaction-Limited Kinetics of Membrane-to-Surface Adhesion and Detachment
,”
Proc. R. Soc. London. Ser. B
,
234
(
1274
), pp.
55
83
.10.1098/rspb.1988.0038
41.
Krishnan
,
R.
,
Canovic
,
E. P.
,
Iordan
,
A. L.
,
Rajendran
,
K.
,
Manomohan
,
G.
,
Pirentis
,
A. P.
,
Smith
,
M. L.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
, and
Stamenovic
,
D.
,
2012
, “
Fluidization, Resolidification, and Reorientation of the Endothelial Cell in Response to Slow Tidal Stretches
,”
Am. J. Physiol. Cell Physiol.
,
303
(
4
), pp.
C368
C375
.10.1152/ajpcell.00074.2012
You do not currently have access to this content.