Continuing from Part I (Christensen, 2014, “Failure Mechanics—Part I: The Coordination Between Elasticity Theory and Failure Theory for all Isotropic Materials,” ASME J. Appl. Mech., 81(8), p. 081001), the relationship between elastic energy and failure specification is further developed. Part I established the coordination of failure theory with elasticity theory, but subject to one overriding assumption: that the values of the involved Poisson's ratios always be non-negative. The present work derives the physical proof that, contrary to fairly common belief, Poisson's ratio must always be non-negative. It can never be negative for homogeneous and isotropic materials. This is accomplished by first probing the reduced two-dimensional (2D) elasticity problem appropriate to graphene, then generalizing to three-dimensional (3D) conditions. The nanomechanics analysis of graphene provides the key to the entire development. Other aspects of failure theory are also examined and concluded positively. Failure theory as unified with elasticity theory is thus completed, finalized, and fundamentally validated.

References

References
1.
Christensen
,
R. M.
,
2014
, “
Failure Mechanics—Part I: The Coordination Between Elasticity Theory and Failure Theory for all Isotropic Materials
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081001
.10.1115/1.4027753
2.
Christensen
,
R. M.
,
2013
,
The Theory of Materials Failure
,
Oxford University
,
Oxford, UK
.
3.
Cho
,
S.
,
Chasiotis
,
I.
,
Friedman
,
T. A.
, and
Sullivan
,
J. P.
,
2005
, “
Young's Modulus, Poisson's Ratio and Failure Properties of Tetrahedral Amorphous Diamond-Like Carbon for MEMS Devices
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
728
735
.10.1088/0960-1317/15/4/009
4.
Cho
,
S.-J.
,
Lee
,
K.-R.
,
Eun
,
K. Y.
,
Hahn
,
J. H.
, and
Ko
,
D.-H.
, “
Determination of Elastic Modulus and Poisson's Ratio for Diamond-Like Carbon Films
,”
Thin Solid Films
,
341
(
1–2
), pp.
207
210
.10.1016/S0040-6090(98)01512-0
5.
Robertson
,
J.
,
2002
, “
Diamond-Like Amorphous Carbon
,”
Mater. Sci. Eng.
,
37
(
4–6
), pp.
129
281
.10.1016/S0927-796X(02)00005-0
6.
Greaves
,
G. N.
,
Greer
,
A. L.
,
Lakes
,
R. S.
, and
Rouxel
,
T.
,
2011
, “
Poisson's Ratio and Modern Materials
,”
Nat. Mater.
,
10
(
11
), pp.
823
837
.10.1038/nmat3134
7.
Spear
,
K. E.
, and
Dismukes
,
J. P.
,
1994
,
Synthetic Diamond
,
Wiley
,
New York
.
8.
Chang
,
T.
, and
Gao
,
H.
,
2003
, “
Size-Dependent Elastic Properties of a Single-Walled Carbon Nanotube Via a Molecular Mechanics Model
,”
J. Mech. Phys. Solids
,
51
(
6
), pp.
1059
1074
.10.1016/S0022-5096(03)00006-1
9.
Popov
,
V. N.
,
van Doren
,
V. E.
, and
Balkanski
,
M.
,
2000
, “
Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
61
(
4
), pp.
3078
3084
.10.1103/PhysRevB.61.3078
10.
Tu
,
Z. C.
, and
Yang
,
Z.-C.
,
2002
, “
Single-Walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes With the Effective Young's Modulus Dependent on Layer Number
,”
Phys. Rev. B
,
65
(
23
), p.
233407
.10.1103/PhysRevB.65.233407
11.
Li
,
C.
, and
Chou
,
T.-W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2487
2499
.10.1016/S0020-7683(03)00056-8
12.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
(
6584
), pp.
678
680
.10.1038/381678a0
13.
Zhao
,
P.
, and
Shi
,
G.
,
2011
, “
Study of Poisson's Ratios of Graphene and Single-Walled Carbon Nanotubes Based on an Improved Molecular Structural Mechanics Model
,”
TechScience
,
5
(
1
), pp.
49
58
.10.3970/sl.2011.005.049
14.
Scarpa
,
F.
,
Adhikari
,
S.
, and
Phani
,
A. S.
,
2009
, “
Effective Elastic Mechanical Properties of Single Layer Graphene Sheets
,”
Nanotechnology
,
20
(
6
), pp.
1
11
.10.1088/0957-4484/20/6/065709
15.
Al-Jishi
,
R.
, and
Dresselhaus
,
G.
,
1982
, “
Lattice-Dynamical Model of Graphite
,”
Phys. Rev. B
,
26
(
8
), pp.
4514
4522
.10.1103/PhysRevB.26.4514
16.
Lee
,
C.
,
Wei
,
Z.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
17.
Mott
,
P. H.
, and
Roland
,
C. M.
,
2009
, “
Limits to Poisson's Ratio in Isotropic Materials
,”
Phys. Rev. B
,
80
(
13
), p.
132104
.10.1103/PhysRevB.80.132104
18.
Ely
,
R. E.
,
1965
, “
Strength of Graphite Tube Specimens Under Combined Stress
,”
J. Am. Ceram. Soc.
,
48
(
10
), pp.
505
508
.10.1111/j.1151-2916.1965.tb14649.x
You do not currently have access to this content.