Self-excited vibrations in mechanical engineering systems are in general unwanted and sometimes dangerous. There are many systems exhibiting self-excited vibrations which up to this day cannot be completely avoided, such as brake squeal, the galloping vibrations of overhead transmission lines, the ground resonance in helicopters and others. These systems have in common that in the linearized equations of motion the self-excitation terms are given by nonconservative, circulatory forces. It has been well known for some time, that such systems are very sensitive to damping. Recently, several new theorems concerning the effect of damping on the stability and on the self-excited vibrations were proved by some of the authors. The present paper discusses these new mathematical results for practical mechanical engineering systems. It turns out that the structure of the damping matrix is of utmost importance, and the common assumption, namely, representing the damping matrix as a linear combination of the mass and the stiffness matrices, may give completely misleading results for the problem of instability and the onset of self-excited vibrations. The authors give some indications on improving the description of the damping matrix in the linearized problems, in order to enhance the modeling of the self-excited vibrations. The improved models should lead to a better understanding of these unwanted phenomena and possibly also to designs oriented toward their avoidance.

References

1.
Rafanello
,
S.
,
1999
, “
Modeling the Coupled Rotor/Fuselage Response of the H-3 Sea King Utilizing the NPS Full Nonlinear Response
,” M.S. thesis, Naval Postgraduate School, Monterey, CA.
2.
Wang
,
W.
,
2007
, “
Semi-Active Adaptive Control of Helicopter Ground Resonance
,” Ph.D. thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
3.
Mokrane
,
A.
,
2011
, “
Helicopter Ground Resonance Prediction Using an Integrated Nonlinear Model
,” Ph.D. thesis, University of Bristol, Bristol, UK.
4.
Sanches
,
L.
,
2011
, “
Helicopter Ground Resonance: Dynamical Modeling, Parametric Robustness Analysis and Experimental Validation
,” Ph.D. thesis, Université de Toulouse, Toulouse, France.
5.
Eckert
,
B.
,
2007
, “
Analytical and Numerical Ground Resonance Analysis of a Conventionally Articulated Main Rotor Helicopter
,” M.S. thesis, Department of Mechanical Engineering, Stellenbosch University, Stellenbosch, South Africa.
6.
Hochlenert
,
D.
,
2012
, “
Normalformen und Einzugsbereiche Nichtlinearer Dynamischer Systeme (Normal Forms and Domains of Attraction in Nonlinear Dynamical Systems)
,” Habilitationsschrift (D.Sc. thesis), Technische Universität Berlin, Berlin.
7.
Lentz
,
L.
, and
Hochlenert
,
D.
,
2013
, “
Nonlinear Analysis of Disk Brake Squeal by Normal Form Theory
,”
11th International Conference on Vibration Problems
, Lisbon, Portugal, September 9–12, Paper No. 606_0.
8.
Hagedorn
,
P.
, and
Hochlenert
,
D.
,
2012
, “
Technische Schwingungslehre. Schwingungen Linearer Diskreter Mechanischer Systeme. (Engineering Vibration Analysis. Vibrations of Linear Discrete Mechanical Systems)
,” Wissenschaftlicher Verlag Harri Deutsch, Frankfurt am Main, Germany.
9.
Kinkaid
,
N. M.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(1), pp.
105
166
.10.1016/S0022-460X(02)01573-0
10.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise Vib.
,
1
(
3–4
), pp.
207
231
.10.1504/IJVNV.2005.007524
11.
da Silva
,
C.
, and
Marcelo
,
R.
,
1970
, “
Attitude Stability of a Gravity-Stabilized Gyrostat Satellite
,”
Celestial Mech.
,
2
(2), pp.
147
165
.10.1007/BF01229493
12.
Kimball
, Jr.,
A.
,
1924
, “
Internal Friction Theory of Shaft Whirling
,”
Gen. Electr. Rev.
,
27
, pp.
224
251
.
13.
Gasch
,
R.
,
Nordmann
,
R.
, and
Pfützner
,
H.
,
2006
,
Rotordynamik (Rotordynamics)
, Vol.
2
,
Springer-Verlag
,
Berlin
.
14.
Ziegler
,
H.
,
1953
, “
Linear Elastic Stability
,”
Z. Angew. Math. Phys.
,
4
(
3
), pp.
167
185
.10.1007/BF02083512
15.
Bolotin
,
V.
,
1964
, “
The Dynamical Stability of Elastic Systems
,” Holden-Day San Francisco, CA.
16.
Leipholz
,
H.
,
1970
,
Stability Theory
,
Academic Press Inc.
, New York.
17.
Kirillov
,
O.
, and
Verhulst
,
F.
,
2011
, “
Dissipation-Induced Instabilities and Symmetry
,”
Acta Mech. Sin.
,
27
(1), pp.
2
6
.10.1007/s10409-011-0409-0
18.
Kirillov
,
O.
,
2013
, “
Paradoxes of Dissipation-Induced Destabilization or Who Opened Whitney's Umbrella?
,”
ZAMM
,
90
(6), pp.
462
488
.10.1002/zamm.200900315
19.
Herrmann
,
G.
, and
Bungay
,
R. W.
,
1964
, “
On the Stability of Elastic Systems Subjected to Nonconservative Forces
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
435
440
.10.1115/1.3629660
20.
Herrmann
,
G.
, and
Jong
,
I.-C.
,
1965
, “
On the Destabilizing Effect of Damping in Nonconservative Elastic Systems
,”
ASME J. Appl. Mech.
,
32
(
3
), pp.
592
597
.10.1115/1.3627264
21.
Herrmann
,
G.
,
1971
,
Dynamics and Stability of Mechanical Systems With Follower Forces
,
National Aeronautics and Space Administration
,
Washington, DC
.
22.
Seyranian
,
A. P.
, and
Mailybaev
,
A. A.
,
2003
,
Multiparameter Stability Theory With Mechanical Applications
,
World Scientific Publishing
,
Singapore
.
23.
Spelsberg-Korspeter
,
G.
,
2013
, Robust Structural Design Against Self-Excited Vibrations
(Springer Briefs in Applied Sciences and Technology)
,
Springer
,
Heidelberg
.
24.
Day
,
J.
,
1967
, “
Disc Brake Rotor
,” U.S. Patent No. 3,298,476.
25.
Murray
,
S. L.
,
1985
, “
Brake Rotor With Vibration Harmonic Suppression, and Method of Manufacture
,” U.S. Patent No. 4,523,666.
26.
Okamura
,
H.
, and
Yamada
,
M.
,
1989
, “
Rotary Disc for Disc Brake Assembly
,” U.S. Patent No. 4,867,284.
27.
Nishiwaki
,
M.
,
Harada
,
H.
,
Okamura
,
H.
, and
Ikeuchi
,
T.
,
1989
, “
Study on Disc Brake Squeal
,”
SAE
Technical Paper No. 890864.10.4271/890864
28.
Fieldhouse
,
J. D.
,
Steel
,
W. P.
,
Talbot
,
J. C.
, and
Siddiqui
,
M. A.
,
2004
, “
Rotor Asymmetry Used to Reduce Disc Brake Noise
,”
SAE
Technical Paper No. 2004-01-2797.10.4271/2004-01-2797
29.
Spelsberg-Korspeter
,
G.
,
2010
, “
Structural Optimization for the Avoidance of Self-Excited Vibrations Based on Analytical Models
,”
J. Sound Vib.
,
329
(
23
), pp.
4829
4840
.10.1016/j.jsv.2010.04.004
30.
von Wagner
,
U.
,
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2007
, “
Minimal Models for Disk Brake Squeal
,”
J. Sound Vib.
,
302
(3), pp.
527
539
.10.1016/j.jsv.2006.11.023
31.
Hader
,
P.
,
2005
, “
Selbsterregte Schwingungen von Papierkalandern (Self-Excited Vibrations of Paper Calenders)
,” Ph.D. thesis, Universität Duisburg-Essen, Essen, Germany.
32.
Brommundt
,
E.
,
2009
, “
High-Frequency Self-Excitation in Paper Calenders
,”
Tech. Mech.
,
29
(1), pp.
60
85
, available at: http://www.ovgu.de/ifme/zeitschrift_tm/2009_Heft1/06_Brommundt.pdf
33.
Spelsberg-Korspeter
,
G.
,
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2011
, “
Self-Excitation Mechanisms in Paper Calenders Formulated as a Stability Problem
,”
Tech. Mech.
,
31
(1), pp.
15
24
, available at: http://www.ovgu.de/ifme/zeitschrift_tm/2011_Heft1/02_Spelsberg_Korspeter.pdf
34.
Wiendl
,
S.
,
2011
, “
Modellierung von Schwingungsphänomenen in Papierkalandern (Modeling of Vibration Phenomena in Paper Calenders)
,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
35.
Fritz
,
G.
,
Sinou
,
J.-J.
,
Dufall
,
J.-M.
, and
Jézéquel
,
L.
,
2007
, “
Effects of Damping on Brake Squeal Coalescence Patterns—Application on a Finite Element Model
,”
Mech. Res. Commun.
,
34
(2), pp.
181
190
.10.1016/j.mechrescom.2006.09.012
36.
Ouyang
,
H.
,
2009
, “
Prediction and Assignment of Latent Roots of Damped Asymmetric Systems by Structural Modifications
,”
Mech. Syst. Sig. Process.
,
23
(6), pp.
1920
1930
.10.1016/j.ymssp.2008.08.001
37.
Hagedorn
,
P.
,
Heffel
,
E.
,
Lancaster
,
P.
,
Müller
,
P. C.
, and
Kapuria
,
S.
,
2014
, “
Some Recent Results on MDGKN-Systems
,”
ZAMM
(in press).10.1002/zamm.201300270
38.
Hagedorn
,
P.
,
1988
,
Non-Linear Oscillations
,
Clarendon
,
Oxford
, UK.
You do not currently have access to this content.