Nonlinear dynamic responses of an Euler–Bernoulli beam attached to a rotating rigid hub with a constant angular velocity under the gravity load are investigated. The slope angle of the centroid line of the beam is used to describe its motion, and the nonlinear integro-partial differential equation that governs the motion of the rotating hub-beam system is derived using Hamilton's principle. Spatially discretized governing equations are derived using Lagrange's equations based on discretized expressions of kinetic and potential energies of the system, yielding a set of second-order nonlinear ordinary differential equations with combined parametric and forced harmonic excitations due to the gravity load. The incremental harmonic balance (IHB) method is used to solve for periodic responses of a high-dimensional model of the system for which convergence is reached and its period-doubling bifurcations. The multivariable Floquet theory along with the precise Hsu's method is used to investigate the stability of the periodic responses. Phase portraits and bifurcation points obtained from the IHB method agree very well with those from numerical integration.

References

1.
Schilhansl
,
M. J.
,
1958
, “
Bending Frequency of a Rotating Cantilever Beam
,”
ASME J. Appl. Mech.
,
25
, pp.
28
30
.
2.
Yoo
,
H. H.
, and
Shin
,
S. H.
,
1998
, “
Vibration Analysis of Rotating Cantilever Beams
,”
J. Sound Vib.
,
212
(
5
), pp.
807
828
.10.1006/jsvi.1997.1469
3.
Oh
,
S. Y.
, and
Librescu
,
L.
,
2003
, “
Effects of Pretwist and Presetting on Coupled Bending Vibrations of Rotating Thin-Walled Composite Beams
,”
Int. J. Solids Struct.
,
40
(5), pp.
1203
1224
.10.1016/S0020-7683(02)00605-4
4.
Ansari
,
M.
,
Esmailzadeh
,
E.
, and
Jalili
,
N.
,
2011
, “
Exact Frequency Analysis of a Rotating Cantilever Beam With Tip Mass Subjected to Torsional-Bending Vibrations
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041003
.10.1115/1.4003398
5.
Turhan
,
Ö.
, and
Bulut
,
G.
,
2009
, “
On Nonlinear Vibrations of a Rotating Beam
,”
J. Sound Vib.
,
322
(1–2), pp.
314
335
.10.1016/j.jsv.2008.11.012
6.
Zhu
,
W. D.
, and
Mote
,
C. D.
, Jr.
,
1997
, “
Dynamic Modeling and Optimal Control of Rotating Euler-Bernoulli Beams
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(4), pp.
802
808
.10.1115/1.2802393
7.
Abolghasemi
,
M.
, and
Jalali
,
M. A.
,
2003
, “
Attractors of a Rotating Viscoelastic Beam
,”
Int. J. Nonlinear Mech.
,
38
(5), pp.
739
751
.10.1016/S0020-7462(01)00130-5
8.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2006
, “
Non-Linear Dynamics of Wind Turbine Wings
,”
Int. J. Nonlinear Mech.
,
41
(5), pp.
629
643
.10.1016/j.ijnonlinmec.2006.01.003
9.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2007
, “
Nonlinear Parametric Instability of Wind Turbine Wings
,”
J. Sound Vib.
,
299
(1–2), pp.
64
82
.10.1016/j.jsv.2006.06.055
10.
Yang
,
J. B.
,
Jiang
,
L. J.
, and
Chen
,
D. C.
,
2004
, “
Dynamic Modelling and Control of a Rotating Euler-Bernoulli Beam
,”
J. Sound Vib.
,
274
(3–5), pp.
863
875
.10.1016/S0022-460X(03)00611-4
11.
Wang
,
F. X.
, and
Zhang
,
W.
,
2012
, “
Stability Analysis of a Nonlinear Rotating Blade With Torsional Vibrations
,”
J. Sound Vib.
,
331
(26), pp.
5755
5773
.10.1016/j.jsv.2012.05.024
12.
Rao
,
J. S.
, and
Carnegie
,
W.
,
1972
, “
Non-Linear Vibrations of Rotating Cantilever Blades Treated by the Ritz Averaging Process
,”
Aeronaut. J.
,
76
, pp.
566
569
.
13.
Peshek
,
E.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2002
, “
Modal Reduction of a Nonlinear Rotating Beam Through Nonlinear Normal Modes
,”
ASME J. Vib. Acoust.
,
124
(2), pp.
229
236
.10.1115/1.1426071
14.
Inoue
,
T.
,
Ishida
,
Y.
, and
Kiyohara
,
T.
,
2012
, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out of Plane Vibration of the Elastic Blade)
,”
ASME J. Vib. Acoust.
,
134
(
3
), pp.
229
236
.10.1115/1.4005829
15.
Chopra
,
I.
, and
Dugundji
,
J.
,
1979
, “
Non-Linear Dynamic Response of a Wind Turbine Blade
,”
J. Sound Vib.
,
63
(
2
), pp.
265
286
.10.1016/0022-460X(79)90883-6
16.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Structural Vibrations
,”
ASME J. Appl. Mech.
,
48
(4), pp.
959
964
.10.1115/1.3157762
17.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1982
, “
Incremental Time-Space Finite Strip Method for Nonlinear Structural Vibrations
,”
Earthquake Eng. Struct. Dyn.
,
10
(2), pp.
239
253
.10.1002/eqe.4290100206
18.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1982
, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
,
49
(4), pp.
849
853
.10.1115/1.3162626
19.
Xu
,
G. Y.
, and
Zhu
,
W. D.
,
2010
, “
Nonlinear and Time-Varying Dynamics of High-Dimensional Models of a Translating Beam With a Stationary Load Subsystem
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061012
.10.1115/1.4000464
20.
Zhu
,
W. D.
,
Ren
,
H.
, and
Xiao
,
C.
,
2011
, “
A Nonlinear Model of a Slack Cable With Bending Stiffness and Moving Ends With Application to Elevator Traveling and Compensation Cables
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041017
.10.1115/1.4003348
21.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
.10.1016/0022-460X(90)90528-8
22.
Friedmann
,
P.
,
Hammond
,
C. E.
, and
Woo
,
T. H.
,
1977
, “
Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems
,”
Int. J. Numer. Methods Eng.
,
11
(7), pp.
1117
1136
.10.1002/nme.1620110708
23.
Hsu
,
C. S.
,
1972
, “
Impulsive Parametric Excitation: Theory
,”
ASME J. Appl. Mech.
,
39
(2), pp.
551
558
.10.1115/1.3422715
24.
Hsu
,
C. S.
,
1974
, “
On Approximating a General Linear Periodic System
,”
J. Math. Anal. Appl.
,
45
(1), pp.
234
251
.10.1016/0022-247X(74)90134-6
25.
Hsu
,
C. S.
, and
Cheng
,
W. H.
,
1973
, “
Applications of the Theory of Impulsive Parametric Excitation and New Treatments of General Parametric Excitation Problems
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
78
86
.10.1115/1.3422976
26.
Huang
,
J. L.
,
Su
,
R. K. L.
, and
Chen
,
S. H.
,
2009
, “
Precise Hsu's Method for Analyzing the Stability of Periodic Solutions of Multi-Degrees-of-Freedom Systems With Cubic Nonlinearity
,”
Comput. Struct.
,
87
(23–24), pp.
1624
1630
.10.1016/j.compstruc.2009.09.005
27.
Zhong
,
W. X.
, and
Williams
,
F. W.
,
1994
, “
A Precise Time Step Integration Method
,”
J. Mech. Eng. Sci.
,
208
(6), pp.
427
430
.10.1243/PIME_PROC_1994_208_148_02
28.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1994
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
, pp.
205
208
.
You do not currently have access to this content.