The zeroth-order parametric finite-volume direct averaging micromechanics (FVDAM) theory is further extended in order to model the evolution of damage in periodic heterogeneous materials. Toward this end, displacement discontinuity functions are introduced into the formulation, which may represent cracks or traction-interfacial separation laws within a unified framework. The cohesive zone model (CZM) is then implemented to simulate progressive separation of adjacent phases or subdomains. The new capability is verified in the linear region upon comparison with an exact elasticity solution for an inclusion surrounded by a linear interface of zero thickness in an infinite matrix that obeys the same law as CZM before the onset of degradation. The extended theory's utility is then demonstrated by revisiting the classical fiber/matrix debonding phenomenon observed in SiC/Ti composites, illustrating its ability to accurately capture the mechanics of progressive interfacial degradation.
Skip Nav Destination
Article navigation
October 2014
Research-Article
Cohesive Zone-Based Damage Evolution in Periodic Materials Via Finite-Volume Homogenization
Wenqiong Tu,
Wenqiong Tu
Civil Engineering Department,
University of Virginia
,Charlottesville, VA 22904-4742
Search for other works by this author on:
Marek-Jerzy Pindera
Marek-Jerzy Pindera
1
Mem. ASME
Civil Engineering Department,
Civil Engineering Department,
University of Virginia
,Charlottesville, VA 22904-4742
1Corresponding author.
Search for other works by this author on:
Wenqiong Tu
Civil Engineering Department,
University of Virginia
,Charlottesville, VA 22904-4742
Marek-Jerzy Pindera
Mem. ASME
Civil Engineering Department,
Civil Engineering Department,
University of Virginia
,Charlottesville, VA 22904-4742
1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received March 29, 2014; final manuscript received July 26, 2014; accepted manuscript posted August 13, 2014; published online August 13, 2014. Assoc. Editor: Nick Aravas.
J. Appl. Mech. Oct 2014, 81(10): 101005 (16 pages)
Published Online: August 13, 2014
Article history
Received:
March 29, 2014
Revision Received:
July 26, 2014
Accepted:
July 30, 2014
Citation
Tu, W., and Pindera, M. (August 13, 2014). "Cohesive Zone-Based Damage Evolution in Periodic Materials Via Finite-Volume Homogenization." ASME. J. Appl. Mech. October 2014; 81(10): 101005. https://doi.org/10.1115/1.4028103
Download citation file:
Get Email Alerts
Related Articles
Micromechanical Progressive Failure Analysis of Fiber-Reinforced Composite Using Refined Beam Models
J. Appl. Mech (February,2018)
Quadrilateral Subcell Based Finite Volume Micromechanics Theory for Multiscale Analysis of Elastic Periodic Materials
J. Appl. Mech (January,2009)
Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials
J. Appl. Mech (September,2001)
Parametric Finite-Volume Micromechanics of Uniaxial Continuously-Reinforced Periodic Materials With Elastic Phases
J. Eng. Mater. Technol (July,2008)
Related Chapters
Application of X-Ray Tomography to the Nondestructive Testing of High-Performance Polymer Composites
Damage Detection in Composite Materials
Probabilistic Prediction of Crack Growth Based on Creep/Fatigue Damage Accumulation Mechanism
Creep-Fatigue Interactions: Test Methods and Models
Fatigue of Composite Materials—Damage Model and Life Prediction
Composite Materials: Fatigue and Fracture, Second Volume