The zeroth-order parametric finite-volume direct averaging micromechanics (FVDAM) theory is further extended in order to model the evolution of damage in periodic heterogeneous materials. Toward this end, displacement discontinuity functions are introduced into the formulation, which may represent cracks or traction-interfacial separation laws within a unified framework. The cohesive zone model (CZM) is then implemented to simulate progressive separation of adjacent phases or subdomains. The new capability is verified in the linear region upon comparison with an exact elasticity solution for an inclusion surrounded by a linear interface of zero thickness in an infinite matrix that obeys the same law as CZM before the onset of degradation. The extended theory's utility is then demonstrated by revisiting the classical fiber/matrix debonding phenomenon observed in SiC/Ti composites, illustrating its ability to accurately capture the mechanics of progressive interfacial degradation.

References

References
1.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypothesis. Axially-Symmetric Cracks
,”
Prikl. Mat. Mekh.
,
23
(
3
), pp.
434
444
.10.1016/0021-8928(59)90157-1
2.
Barenblatt
,
G. I.
,
1962
,
Mathematical Theory of Equilibrium Cracks in Brittle Fracture
(Advances in Applied Mechanics, Vol.
VII
),
H. L.
Dryden
, and
T.
von Karman
, eds.,
Academic
,
New York
, pp.
55
125
.
3.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
4.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
5.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulation of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.10.1016/0022-5096(94)90003-5
6.
Ortiz
,
M.
, and
Suresh
,
S.
,
1993
, “
Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
77
84
.10.1115/1.2900782
7.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.10.1016/0020-7683(95)00255-3
8.
Elices
,
M.
,
Guinea
,
G. V.
,
Gomerz
,
J.
, and
Planas
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
137
163
.10.1016/S0013-7944(01)00083-2
9.
Jiang
,
L. Y.
,
Tan
,
H. L.
,
Wu
,
J.
,
Huang
,
Y. G.
, and
Hwang
,
K. C.
,
2007
, “
Continuum Modeling of Interfaces in Polymer Matrix Composites Reinforced by Carbon Nanotubes
,”
Nano
,
2
(
3
), pp.
139
149
.10.1142/S1793292007000519
10.
Banea
,
M. D.
, and
da Silva
,
L. F. M.
,
2009
, “
Adhesively Bonded Joints in Composite Materials: An Overview
,”
Proc. Inst. Mech. Eng.
, Part L,
223
, pp.
1
18
.10.1243/14644207JMDA219
11.
Kim
,
Y. P.
,
2011
, “
Cohesive Zone Model to Predict Fracture in Bituminous Materials and Asphaltic Pavements: State-of-the-Art Review
,”
Int. J. Pavement Eng.
,
12
(
4
), pp.
343
356
.10.1080/10298436.2011.575138
12.
Park
,
K.
, and
Paulino
,
G. H.
,
2011
, “
Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces
,”
ASME Appl. Mech. Rev.
,
64
(
6
), p.
060802
.10.1115/1.4023110
13.
Berezovski
,
A.
,
Engelbrecht
,
J.
, and
Maugin
,
G. A.
,
2008
,
Numerical Simulation of Waves and Fronts in Inhomogeneous Solids, Series A
, Vol.
62
,
World Scientific
,
Hackensack, NJ
.
14.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, Ltd.
,
Prentice-Hall
,
New York
.
15.
Ivankovic
,
A.
,
Demirdzic
,
I.
,
Williams
,
J. G.
, and
Leevers
,
P. S.
,
1994
, “
Application of the Finite Volume Method to the Analysis of Dynamic Fracture Problems
,”
Int. J. Fract.
,
66
(
4
), pp.
357
371
.10.1007/BF00018439
16.
Ivankovic
,
A.
,
1999
, “
Finite Volume Modelling of Dynamic Fracture Problems
,”
Comput. Model. Simul. Eng.
,
4
, pp.
227
235
.
17.
Stylianou
,
V.
, and
Ivankovic
,
A.
,
2002
, “
Finite Volume Analysis of Dynamic Fracture Phenomena, Part II: A Cohesive Zone Type Modelling
,”
Int. J. Fract.
,
113
(
2
), pp.
107
123
.10.1023/A:1015532129150
18.
Karac
,
A.
,
Blackman
,
B. R. K.
,
Cooper
,
V.
,
Kinloch
,
A. J.
,
Sanchez
,
S. R.
,
Teo
,
W. S.
, and
Ivankovic
,
A.
,
2011
, “
Modelling the Fracture Behaviour of Adhesively-Bonded Joints as a Function of Test Rate
,”
Eng. Fract. Mech.
,
78
(
6
), pp.
973
989
.10.1016/j.engfracmech.2010.11.014
19.
Carolan
,
D.
,
Tukovic
,
Z.
,
Murphy
,
N.
, and
Ivankovic
,
A.
,
2013
, “
Arbitrary Crack Propagation in Multi-Phase Materials Using the Finite Volume Method
,”
J. Comput. Mater. Sci.
,
69
, pp.
153
159
.10.1016/j.commatsci.2012.11.049
20.
Cavalcante
,
M. A. A.
,
Pindera
,
M.-J.
, and
Khatam
,
H.
,
2012
, “
Finite-Volume Micromechanics of Periodic Materials: Past, Present and Future
,”
Composites, Part B
,
43
(
6
), pp.
2521
2543
.10.1016/j.compositesb.2012.02.006
21.
Pindera
,
M.-J.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Bansal
,
Y.
,
2009
, “
Micromechanics of Spatially Uniform Heterogeneous Media: A Critical Review and Emerging Approaches
,”
Composites, Part B
,
40
(
5
), pp.
349
378
.10.1016/j.compositesb.2009.03.007
22.
Tukovic
,
Z.
,
Ivankovic
,
A.
, and
Karac
,
A.
,
2013
, “
Finite-Volume Stress Analysis in Multi-Material Linear Elastic Body
,”
Int. J. Numer. Meth. Eng.
,
93
(
4
), pp.
400
419
.10.1002/nme.4390
23.
Alveen
,
P.
,
McNamara
,
D.
,
Carolan
,
D.
,
Murphy
,
N.
, and
Ivankovic
,
A.
,
2014
, “
Analysis of Two-Phase Ceramic Composites Using Micromechanical Models
,”
Comput. Mater. Sci.
,
92
, pp.
318
324
.10.1016/j.commatsci.2014.05.061
24.
Chen
,
L.
, and
Pindera
,
M.-J.
,
2007
, “
Plane Analysis of Finite Multilayered Media With Multiple Aligned Cracks. Part I: Theory
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
128
143
.10.1115/1.2201883
25.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
,
2007
, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis
,”
ASME J. Appl. Mech.
,
74
(
5
), pp.
935
945
.10.1115/1.2722312
26.
Bansal
,
Y.
, and
Pindera
,
M.-J.
,
2003
, “
Efficient Reformulation of the Thermoelastic Higher-Order Theory for Functionally Graded Materials
,”
J. Therm. Stresses
,
26
(
11/12
), pp.
1055
1092
.10.1080/714050872
27.
Gattu
,
M.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Pindera
,
M.-J.
,
2008
, “
Parametric Finite-Volume Micromechanics of Uniaxial, Continuously-Reinforced Periodic Materials With Elastic Phases
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031015
.10.1115/1.2931157
28.
Khatam
,
H.
, and
Pindera
,
M.-J.
,
2009
, “
Thermo-Elastic Moduli of Lamellar Composites With Wavy Architectures
,”
Composites, Part B
,
40
(
1
), pp.
50
64
.10.1016/j.compositesb.2008.07.001
29.
Khatam
,
H.
, and
Pindera
,
M.-J.
,
2009
, “
Parametric Finite-Volume Micromechanics of Periodic Materials With Elastoplastic Phases
,”
Int. J. Plast.
,
25
(
7
), pp.
1386
1411
.10.1016/j.ijplas.2008.09.003
30.
Bansal
,
Y.
, and
Pindera
,
M.-J.
,
2005
, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
177
195
.10.1115/1.1831294
31.
Bansal
,
Y.
, and
Pindera
,
M.-J.
,
2006
, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
,
22
(
5
), pp.
775
825
.10.1016/j.ijplas.2005.04.012
32.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North Holland, Amsterdam, Netherlands
.
33.
Suquet
,
P. M.
,
1987
,
Elements of Homogenization for Inelastic Solid Mechanics
(Lecture Notes in Physics, Vol.
272
),
Springer-Verlag
,
Berlin
, pp.
193
278
.
34.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
0308031
.10.1115/1.4001911
35.
Achenbach
,
J. D.
,
1975
,
A Theory of Elasticity With Microstructure for Directionally Reinforced Composites
,
Springer-Verlag
,
New York
.
36.
Geubelle
,
P. H.
, and
Baylor
,
J. S.
,
1998
, “
Impact-Induced Delamination of Composites: A 2D Simulation
,”
Composites, Part B
,
29
(
5
), pp.
589
602
.10.1016/S1359-8368(98)00013-4
37.
Chandra
,
N.
,
Li
,
H.
,
Shet
,
C.
, and
Ghonem
,
H.
,
2002
, “
Some Issues in the Application of Cohesive Zone Models for Metal–Ceramic Interfaces
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2827
2855
.10.1016/S0020-7683(02)00149-X
38.
Matous
,
K.
, and
Geubelle
,
P. H.
,
2006
, “
Multiscale Modelling of Particle Debonding in Reinforced Elastomers Subjected to Finite Deformations
,”
Int. J. Numer. Meth. Eng.
,
65
(
2
), pp.
190
223
.10.1002/nme.1446
39.
Song
,
S. H.
,
Paulino
,
G. H.
, and
Buttlar
,
W. G.
,
2006
, “
A Bilinear Cohesive Zone Model Tailored for Fracture of Asphalt Concrete Considering Viscoelastic Bulk Material
,”
Eng. Fract. Mech.
,
73
(
18
), pp.
2829
2848
.10.1016/j.engfracmech.2006.04.030
40.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.10.1016/0022-5096(63)90036-X
41.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc., London, Ser. A
,
241
(
1226
), pp.
376
396
.10.1098/rspa.1957.0133
42.
Drago
,
A. S.
, and
Pindera
,
M.-J.
,
2008
, “
A Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051010
.10.1115/1.2913043
43.
Johnson
,
W. S.
,
Lubowinski
,
S. J.
, and
Highsmith
,
A. L.
,
1990
, “
Mechanical Characterization of Unnotched SCS6/Ti-15-3 Metal Matrix Composites at Room Temperature, Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites
,”
J. M.
Kennedy
,
H. H.
Moeller
,
W. S.
Johnson
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
193
218
, Paper No. ASTM STP 1080.
44.
Dieter
,
G. E.
,
1976
,
Mechanical Metallurgy
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
451
489
.
45.
Raghavan
,
P.
, and
Ghosh
,
S.
,
2005
, “
A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding
,”
Mech. Mater.
,
37
(
9
), pp.
955
979
.10.1016/j.mechmat.2004.10.003
46.
Cavalcante
,
M. A. A.
, and
Pindera
,
M.-J.
,
2014
, “
Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformation. Part I: Framework
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021005
.10.1115/1.4024406
47.
Tu
,
W.
, and
Pindera
,
M.-J.
,
2013
, “
Targeting the Finite-Deformation Response of Wavy Biological Tissues With Bio-Inspired Material Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
291
308
.10.1016/j.jmbbm.2013.08.001
48.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
, Perth, WA, November 27–December 1, pp.
1942
1948
.10.1109/ICNN.1995.488968
You do not currently have access to this content.