In this study, the effects of the Maxwell stress on the interfacial crack between two dissimilar piezoelectric solids are investigated. With the Stroh form and Muskhelishvili theory, the explicit expressions of generalized stresses are presented and the closed forms of the stress and electric displacement intensity factors are derived. Results show that the generalized stress field has singularities and oscillatory properties near the crack tip and the Maxwell stress has influences on the fracture characteristics. For the piezoelectric composites with the Maxwell stress, the normalized stress intensity factor KI* can be changed by both the remote stress and electric load. Such phenomenon cannot be found for the piezoelectric system without the Maxwell stress. Furthermore, the electric displacement intensity factor is more sensitive to the electric load than that to the remote stress.

References

1.
Melkumyan
,
A.
, and
Mai
,
Y. W.
,
2009
, “
Electroelastic Gap Waves Between Dissimilar Piezoelectric Materials in Different Classes of Symmetry
,”
Int. J. Solids Struct.
,
46
(21), pp.
3760
3770
.10.1016/j.ijsolstr.2009.06.009
2.
Yan
,
P.
,
Jiang
,
C. P.
, and
Song
,
F.
,
2011
, “
An Eigenfunction Expansion-Variational Method for the Anti-Plane Electroelastic Behavior of Three-Phase Fiber Composites
,”
Mech. Mater.
,
43
(10), pp.
586
597
.10.1016/j.mechmat.2011.06.009
3.
Huang
,
Y.
, and
Li
,
X. F.
,
2011
, “
Interfacial Waves in Dissimilar Piezoelectric Cubic Crystals With an Imperfect Bonding
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(6), pp.
1261
1265
.10.1109/TUFFC.2011.1936
4.
Feng
,
W. J.
,
Wang
,
L. Q.
,
Jiang
,
Z. Q.
, and
Zhao
,
Y. M.
,
2004
, “
Shear Wave Scattering From a Partially Debonded Piezoelectric Cylindrical Inclusion
,”
Acta Mech. Solida Sin.
,
17
(3), pp.
258
269
.10.1007/s10338-004-0432-9
5.
Gao
,
C. F.
,
Tong
,
P.
, and
Zhang
,
T. Y.
,
2005
, “
Interaction of a Dipole With an Interfacial Crack in Piezoelectric Media
,”
Compos. Sci. Technol.
,
65
(9), pp.
1354
1362
.10.1016/j.compscitech.2004.12.005
6.
Sladek
,
J.
,
Sladek
,
V.
,
Wünsche
,
M.
, and
Zhang
,
C.
,
2012
, “
Analysis of an Interface Crack Between Two Dissimilar Piezoelectric Solids
,”
Eng. Fract. Mech.
,
89
, pp.
114
127
.10.1016/j.engfracmech.2012.04.032
7.
Zhao
,
Y. F.
,
Zhao
,
M. H.
,
Pan
,
E. N.
, and
Fan
,
C. Y.
,
2014
, “
Analysis of an Interfacial Crack in a Piezoelectric Bi-Material Via the Extended Green's Functions and Displacement Discontinuity Method
,”
Int. J. Solids Struct.
,
51
(6), pp.
1456
1463
.10.1016/j.ijsolstr.2013.12.037
8.
Li
,
S.
,
2003
, “
On Global Energy Release Rate of a Permeable Crack in a Piezoelectric Ceramic
,”
ASME J. Appl. Mech.
,
70
(2), pp.
246
252
.10.1115/1.1544539
9.
Chen
,
Z. T.
,
2006
, “
Dynamic Fracture Mechanics Study of an Electrically Impermeable Mode III Crack in a Transversely Isotropic Piezoelectric Material Under Pure Electric Load
,”
Int. J. Fract.
,
141
(3–4), pp.
395
402
.10.1007/s10704-006-9003-z
10.
Li
,
Y. D.
, and
Lee
,
K. Y.
,
2009
, “
The Shielding Effect of the Imperfect Interface on a Mode III Permeable Crack in a Layered Piezoelectric Sensor
,”
Eng. Fract. Mech.
,
76
(7), pp.
876
883
.10.1016/j.engfracmech.2008.12.011
11.
Zhou
,
Z. G.
,
Guo
,
Y.
, and
Wu
,
L. Z.
,
2009
, “
The Behavior of Three Parallel Non-Symmetric Permeable Mode-III Cracks in a Piezoelectric Material Plane
,”
Mech. Res. Commun.
,
36
(6), pp.
690
698
.10.1016/j.mechrescom.2009.02.008
12.
Hao
,
T. H.
, and
Shen
,
Z. Y.
,
1994
, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
,”
Eng. Fract. Mech.
,
47
(6), pp.
793
802
.10.1016/0013-7944(94)90243-7
13.
Bustamante
,
R.
, and
Rajagopal
,
K. R.
,
2013
, “
On a New Class of Electroelastic Bodies. I
,”
Proc. R. Soc. London, Ser. A
,
469
(2149), p.
20120521
.10.1098/rspa.2012.0521
14.
Bustamante
,
R.
, and
Rajagopal
,
K. R.
,
2013
, “
On a New Class of Electro-Elastic Bodies. II. Boundary Value Problems
,”
Proc. R. Soc. London, Ser. A
,
469
(2149), p.
20130106
.10.1098/rspa.2013.0106
15.
Jiang
,
Q.
, and
Kuang
,
Z. B.
,
2004
, “
Stress Analysis in Two Dimensional Electrostrictive Material With an Elliptic Rigid Conductor
,”
Eur. J. Mech. A–Solid.
,
23
(6), pp.
945
956
.10.1016/j.euromechsol.2004.06.001
16.
Jiang
,
Q.
,
Gao
,
C. F.
, and
Kuang
,
Z. B.
,
2010
, “
Electroelastic Stress in an Electrostrictive Material With Charged Surface Electrodes
,”
Int. J. Eng. Sci.
,
48
(12), pp.
2066
2080
.10.1016/j.ijengsci.2010.04.008
17.
Zhang
,
A. B.
, and
Wang
,
B. L.
,
2014
, “
The Influence of Maxwell Stresses on the Fracture Mechanics of Piezoelectric Materials
,”
Mech. Mater.
,
68
, pp.
64
69
.10.1016/j.mechmat.2013.07.023
18.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
(30), pp.
625
646
.10.1080/14786435808565804
19.
Suo
,
Z.
,
Kuo
,
C. M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics of Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
(4), pp.
739
765
.10.1016/0022-5096(92)90002-J
20.
Gao
,
C. F.
, and
Mai
,
Y. W.
,
2010
, “
Fracture of Electrostrictive Solids Subjected to Combined Mechanical and Electric Loads
,”
Eng. Fract. Mech.
,
77
(10), pp.
1503
1515
.10.1016/j.engfracmech.2010.04.020
21.
Gao
,
C. F.
,
Mai
,
Y. W.
, and
Zhang
,
N.
,
2010
, “
Solution of Collinear Cracks in an Electrostrictive Solid
,”
Philos. Mag.
,
90
(10), pp.
1245
1262
.10.1080/14786430903299311
22.
Muskhelishvili
,
N. I.
,
1975
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff International Publishing
,
Leyden, Netherlands
.
23.
England
,
A. H.
,
1965
, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(2), pp.
400
402
.10.1115/1.3625813
24.
Li
,
Q.
, and
Chen
,
Y. H.
,
2008
, “
Why Traction–Free? Piezoelectric Crack and Coulombic Traction
,”
Arch. Appl. Mech.
,
78
(7), pp.
559
573
.10.1007/s00419-007-0180-7
25.
Zhang
,
T. Y.
,
Zhao
,
M. H.
, and
Gao
,
C. F.
,
2005
, “
The Strip Dielectric Breakdown Model
,”
Int. J. Fract.
,
132
(4), pp.
311
327
.10.1007/s10704-005-2054-8
26.
Gao
,
C. F.
,
Noda
,
N.
, and
Zhang
,
T. Y.
,
2006
, “
Dielectric Breakdown Model for a Conductive Crack and Electrode in Piezoelectric Materials
,”
Int. J. Eng. Sci.
,
44
(3–4), pp.
256
272
.10.1016/j.ijengsci.2005.12.001
You do not currently have access to this content.