The influence of surface stress on the yield strength of nanotwinned polycrystal face-centered-cubic (FCC) metallic nanowire is theoretically investigated. The contribution of surface boundaries on the strengthening/softening is analyzed in the framework of continuum mechanics theory by accounting for the surface energy effects. The other strengthening mechanisms originated from the inner boundaries are described by the Taylor model for the nanotwinned polycrystalline metals. The theoretical results demonstrate that the yield strength of nanotwinned polycrystal wires is dependent on the twin spacing, grain size and the geometrical size of the wire. The surface stress effects on the strength perform more and more significantly with decreasing the wire diameter, especially for the diameter smaller than 20 nm. In addition, the dependence of surface stress on the strength is also relevant to the size of microstructures as well as the magnitude and direction of surface stress. These results may be useful in evaluating the size-dependent mechanical performance of nanostructured materials.

References

References
1.
Dao
,
M.
,
Lu
,
L.
,
Shen
,
Y.
, and
Suresh
,
S.
,
2006
, “
Strength, Strain-Rate Sensitivity and Ductility of Copper With Nanoscale Twins
,”
Acta Mater.
,
54
(
20
), pp.
5421
5432
.10.1016/j.actamat.2006.06.062
2.
Lu
,
L.
,
Chen
,
X.
,
Huang
,
X.
, and
Lu
,
K.
,
2009
, “
Revealing the Maximum Strength in Nanotwinned Copper
,”
Science
,
323
(
5914
), pp.
607
610
.10.1126/science.1167641
3.
Wang
,
J.
, and
Huang
,
H.
,
2006
, “
Novel Deformation Mechanism of Twinned Nanowires
,”
Appl. Phys. Lett.
,
88
(
20
), p.
203112
.10.1063/1.2204760
4.
Zhu
,
T.
,
Li
,
J.
,
Samanta
,
A.
,
Kim
,
H. G.
, and
Suresh
,
S.
,
2007
, “
Interfacial Plasticity Governs Strain Rate Sensitivity and Ductility in Nanostructured Metals
,”
Proc. Natl. Acad. Sci
,
104
(
9
), pp.
3031
3036
.10.1073/pnas.0611097104
5.
Wu
,
Z.
,
Zhang
,
Y.
, and
Srolovitz
,
D. J.
,
2009
, “
Dislocation–Twin Interaction Mechanisms for Ultrahigh Strength and Ductility in Nanotwinned Metals
,”
Acta Mater.
,
57
(
15
), pp.
4508
4518
.10.1016/j.actamat.2009.06.015
6.
Bufford
,
D.
,
Wang
,
H.
, and
Zhang
,
X.
,
2011
, “
High Strength, Epitaxial Nanotwinned Ag Films
,”
Acta Mater.
,
59
(
1
), pp.
93
101
.10.1016/j.actamat.2010.09.011
7.
Froseth
,
A.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
,
2004
, “
Grown-In Twin Boundaries Affecting Deformation in nc-Metals
,”
Appl. Phys. Lett.
,
85
(
24
), pp.
5863
5866
.10.1063/1.1835531
8.
Lu
,
K.
,
Lu
,
L.
, and
Suresh
,
S.
,
2009
, “
Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale
,”
Science
,
324
(
5925
), pp.
349
352
.10.1126/science.1159610
9.
Li
,
X. Y.
,
Wei
,
Y. J.
,
Lu
,
L.
,
Lu
,
K.
, and
Gao
,
H.
,
2010
, “
Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals
,”
Nature
,
464
(
7290
), pp.
877
880
.10.1038/nature08929
10.
Johansson
,
J.
,
Karlsson
,
L. S.
,
Svensson
,
P. T.
,
Martensson
,
T.
,
Wacaser
,
B. A.
,
Deppert
,
K.
,
Samuelson
,
L.
, and
Seifert
,
W.
,
2006
, “
Structural Properties of 111 B Oriented III–V Nanowires
,”
Nat. Mater.
,
5
(
7
), pp.
574
580
.10.1038/nmat1677
11.
Zhong
,
S.
,
Koch
,
T.
,
Wang
,
M.
,
Scherer
,
T.
,
Walheim
,
S.
,
Hahn
,
H.
, and
Schimmel
,
T.
,
2009
, “
Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition
,”
Small
,
5
(
20
), pp.
2265
2270
.10.1002/smll.200900746
12.
Burek
,
M. J.
, and
Greer
,
J. R.
,
2010
, “
Fabrication and Microstructure Control of Nanoscale Mechanical Testing Specimens Via Electron Beam Lithography and Electroplating
,”
Nano Lett.
,
10
(
1
), pp.
69
76
.10.1021/nl902872w
13.
Cao
,
A. J.
,
Wei
,
Y. G.
, and
Mao
,
S. X.
,
2007
, “
Deformation Mechanisms of Face-Centered-Cubic Metal Nanowires With Twin Boundaries
,”
Appl. Phys. Lett.
,
90
(
15
), p.
151909
.10.1063/1.2721367
14.
Zhang
,
Y.
, and
Huang
,
H.
,
2009
, “
Do Twin Boundaries Always Strengthen Metal Nanowires?
Nanoscale Res. Lett.
,
4
(
1
), pp.
34
38
.10.1007/s11671-008-9198-1
15.
Deng
,
C.
, and
Sansoz
,
F.
,
2009
, “
Fundamental Differences in the Plasticity of Periodically Twinned Nanowires in Au, Ag, Al, Cu, Pb and Ni
,”
Acta Mater.
,
57
(
20
), pp.
6090
6101
.10.1016/j.actamat.2009.08.035
16.
Li
,
J.
,
2007
, “
The Mechanics and Physics of Defect Nucleation
,”
MRS Bull.
,
32
(
2
), pp.
151
159
.10.1557/mrs2007.48
17.
Shan
,
Z. W.
,
Mishra
,
R. K.
,
Syed Asif
,
S. A.
,
Warren
,
O. L.
, and
Minor
,
A. M.
,
2008
, “
Mechanical Annealing and Source-Limited Deformation in Submicrometre-Diameter Ni Crystals
,”
Nat. Mater.
,
7
(
2
), pp.
115
119
.10.1038/nmat2085
18.
Jennings
,
A. T.
,
Li
,
J.
, and
Greer
,
J. R.
,
2011
, “
Emergence of Strain-Rate Sensitivity in Cu Nanopillars: Transition From Dislocation Multiplication to Dislocation Nucleation
,”
Acta Mater.
,
59
(
14
), pp.
5627
5637
.10.1016/j.actamat.2011.05.038
19.
Afanasyev
,
K. A.
, and
Sansoz
,
F.
,
2007
, “
Strengthening in Gold Nanopillars With Nanoscale Twins
,”
Nano Lett.
,
7
(
7
), pp.
2056
2062
.10.1021/nl070959l
20.
Deng
,
C.
, and
Sansoz
,
F.
,
2009
, “
Size-Dependent Yield Stress in Twinned Gold Nanowires Mediated by Site-Specific Surface Dislocation Emission
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091914
.10.1063/1.3222936
21.
Guo
,
X.
, and
Xia
,
Y. Z.
,
2011
, “
Repulsive Force vs. Source Number: Competing Mechanisms in the Yield of Twinned Gold Nanowires of Finite Length
,”
Acta Mater.
,
59
(
6
), pp.
2350
2357
.10.1016/j.actamat.2010.12.031
22.
Jang
,
D.
,
Li
,
X. Y.
,
Gao
,
H. J.
, and
Greer
,
J. R.
,
2012
, “
Deformation Mechanisms in Nanotwinned Metal Nanopillars
,”
Nat. Nanotech.
,
7
(
9
), pp.
594
601
.10.1038/nnano.2012.116
23.
Wang
,
J. W.
,
Sansoz
,
F.
,
Huang
,
J. Y.
,
Liu
,
Y.
,
Sun
,
S. H.
,
Zhang
,
Z.
, and
Mao
,
S. X.
,
2013
, “
Near-Ideal Theoretical Strength in Gold Nanowires Containing Angstrom Scale Twins
,”
Nat. Commun.
,
4
(
4
), p.
1742
.10.1038/ncomms2768
24.
Wu
,
Z. X.
,
Zhang
,
Y. W.
,
Jhon
,
M. H.
,
Greer
,
J. R.
, and
Srolovitz
,
D. J.
,
2013
, “
Nanostructure and Surface Effects on Yield in Cu Nanowires
,”
Acta Mater.
,
61
(
6
), pp.
1831
1842
.10.1016/j.actamat.2012.11.053
25.
Diao
,
J.
,
Gall
,
K.
, and
Dunn
,
M. L.
,
2004
, “
Yield Strength Asymmetry in Metal Nanowires
,”
Nano Lett.
,
4
(
10
), pp.
1863
1867
.10.1021/nl0489992
26.
Gall
,
K.
,
Diao
,
J.
, and
Dunn
,
M. L.
,
2004
, “
The Strength of Gold Nanowires
,”
Nano Lett.
,
4
(
12
), pp.
2431
2436
.10.1021/nl048456s
27.
Marszalek
,
P. E.
,
Greenleaf
,
W. J.
,
Li
,
H.
,
Oberhauser
,
A. F.
, and
Fernandez
,
J. M.
,
2000
, “
Atomic Force Microscopy Captures Quantized Plastic Deformation in Gold Nanowires
,”
Proc. Natl. Acad. Sci
,
97
(
12
), pp.
6282
6286
.10.1073/pnas.97.12.6282
28.
Wu
,
B.
,
Heidelberg
,
A.
, and
Boland
,
J. J.
,
2005
, “
Mechanical Properties of Ultrahigh Strength Gold Nanowires
,”
Nat. Mater.
,
4
(7), pp.
525
529
.10.1038/nmat1403
29.
Hurtado
,
D. E.
, and
Ortiz
,
M.
,
2012
, “
Surface Effects and the Size-Dependent Hardening and Strengthening of Nickel Micropillars
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1432
1446
.10.1016/j.jmps.2012.04.009
30.
Pande
,
C. S.
, and
Cooper
,
K. P.
,
2009
, “
Nanomechanics of Hall–Petch Relationship in Nanocrystalline Materials
,”
Prog. Mater. Sci.
,
54
(
6
), pp.
689
706
.10.1016/j.pmatsci.2009.03.008
31.
Zhu
,
T.
, and
Gao
,
H. J.
,
2012
, “
Plastic Deformation Mechanism in Nanotwinned Metals: An Insight From Molecular Dynamics and Mechanistic Modeling
,”
Scripta Mater.
,
66
(
11
), pp.
843
848
.10.1016/j.scriptamat.2012.01.031
32.
Dingreville
,
R.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.10.1016/j.jmps.2005.02.012
33.
Sharma
,
P.
, and
Wheeler
,
L. T.
,
2007
, “
Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
447
454
.10.1115/1.2338052
34.
Zhang
,
W. X.
,
Wang
,
T. J.
, and
Chen
,
X.
,
2010
, “
Effect of Surface/Interface Stress on the Plastic Deformation of Nanoporous Materials and Nanocomposites
,”
Int. J. Plast.
,
26
(
7
), pp.
957
975
.10.1016/j.ijplas.2009.12.002
35.
Pahlevani
,
L.
, and
Shodja
,
H. M.
,
2011
, “
Surface and Interface Effects on Torsion of Eccentrically Two-Phase fcc Circular Nanorods: Determination of the Surface/Interface Elastic Properties Via an Atomistic Approach
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011011
.10.1115/1.4002211
36.
Wang
,
J. X.
,
Huang
,
Z. P.
,
Duan
,
H. L.
,
Yu
,
S. W.
,
Feng
,
X. Q.
,
Wang
,
G. F.
,
Zhang
,
W. X.
, and
Wang
,
T. J.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sinica
,
24
(
1
), pp.
52
82
.10.1016/S0894-9166(11)60009-8
37.
Ansari
,
R.
,
Gholami
,
R.
,
Shjaei
,
M. F.
,
Mohammadi
,
V.
, and
Sahmani
,
S.
,
2013
, “
Surface Stress Effect on the Vibrational Response of Circular Nanoplates With Various Edge Supports
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021021
.10.1115/1.4007255
38.
Zhu
,
L. L.
,
Ruan
,
H. H.
,
Li
,
X. Y.
,
Dao
,
M.
,
Gao
,
H. J.
, and
Lu
,
J.
,
2011
, “
Grain Size Controlled Optimal Twin Spacing for Achieving Ultimate High Strength and High Ductility in Nanotwinned Metals
,”
Acta Mater.
,
59
(
14
), pp.
5544
5557
.10.1016/j.actamat.2011.05.027
39.
Zhu
,
L. L.
,
Kou
,
H. N.
, and
Lu
,
J.
,
2012
, “
On the Role of Hierarchical Twins for Achieving Maximum Yield Strength in Nanotwinned Metals
,”
Appl. Phys. Lett.
,
101
(
8
), p.
081906
.10.1063/1.4747333
You do not currently have access to this content.