Beam-type phononic crystals as one kind of periodic material bear frequency bands for bending waves. For the first time, this paper presents formation mechanisms of the phase constant spectra in pass-bands of bending waves (coupled flexural and thickness-shear waves) in bicoupled beam-type phononic crystals based on the model of periodic binary beam with rigidly connected joints. Closed-form dispersion relation of bending waves in the bicoupled periodic binary beam is obtained by our proposed method of reverberation-ray matrix (MRRM), based on which the bending-wave band structures in the bicoupled binary beam phononic crystal are found to be generated from the dispersion curves of the equivalent bending waves in the unit cell due to the zone folding effect, the cut-off characteristic of thickness-shear wave mode, and the wave interference phenomenon. The ratios of band-coefficient products, the characteristic times of the unit cell and the characteristic times of the constituent beams are revealed as the three kinds of essential parameters deciding the formation of bending-wave band structures. The MRRM, the closed-form dispersion relation, the formation mechanisms, and the essential parameters for the bending-wave band structures in bicoupled binary beam phononic crystals are validated by numerical examples, all of which will promote the applications of beam-type phononic crystals for wave filtering/guiding and vibration isolation/control.

References

References
1.
Kittel
,
C.
,
2005
,
Introduction to Solid State Physics
,
8th ed.
,
John Wiley & Sons
,
New York
.
2.
Elachi
,
C.
,
1976
, “
Waves in Active and Passive Periodic Structures: A Review
,”
Proc. IEEE
,
64
, pp.
1666
1698
.10.1109/PROC.1976.10409
3.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
2nd ed.
,
Dover
,
New York
.
4.
Mead
,
D. J.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964-1995
,”
J. Sound Vib.
,
190
, pp.
495
524
.10.1006/jsvi.1996.0076
5.
Sen Gupta
,
G.
,
1980
, “
Vibration of Periodic Structures
,”
Shock Vib. Dig.
,
12
, pp.
17
31
.10.1177/058310248001200303
6.
Li
,
D.
, and
Benaroya
,
H.
,
1992
, “
Dynamics of Periodic and Near-Periodic Structures
,”
ASME Appl. Mech. Rev.
,
45
, pp.
447
459
.10.1115/1.3119782
7.
Mester
,
S. S.
, and
Benaroya
,
H.
,
1995
, “
Periodic and Near-Periodic Structures
,”
Shock Vib.
,
2
(
1
), pp.
69
95
.
8.
Mead
,
D. J.
,
1973
, “
A General Theory of Harmonic Wave Propagation in Linear Periodic Systems With Multiple Coupling
,”
J. Sound Vib.
,
27
, pp.
235
260
.10.1016/0022-460X(73)90064-3
9.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: I. Mono-Coupled Systems
,”
J. Sound Vib.
,
40
, pp.
1
18
.10.1016/S0022-460X(75)80227-6
10.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: II. Multi-Coupled Systems, With and Without Damping
,”
J. Sound Vib.
,
40
, pp.
19
39
.10.1016/S0022-460X(75)80228-8
11.
Kushwaha
,
M. S.
,
1996
, “
Classical Band Structure of Periodic Elastic Composites
,”
Int. J. Mod. Phys. B
,
10
, pp.
977
1094
.10.1142/S0217979296000398
12.
Kushwaha
,
M. S.
,
1999
, “
Band Gap Engineering in Phononic Crystals
,”
Recent Res. Dev. Appl. Phys.
,
2
, pp.
743
855
.
13.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
, pp.
1734
1736
.10.1126/science.289.5485.1734
14.
Miyashita
,
T.
,
2005
, “
Sonic Crystals and Sonic Wave-Guides
,”
Meas. Sci. Technol.
,
16
, pp.
R47
R63
.10.1088/0957-0233/16/5/R01
15.
Lu
,
M.-H.
,
Feng
,
L.
, and
Chen
,
Y.-F.
,
2009
, “
Phononic Crystals and Acoustic Metamaterials
,”
Mater. Today
,
12
(
12
), pp.
34
42
.10.1016/S1369-7021(09)70315-3
16.
Wen
,
J. H.
,
Wang
,
G.
,
Yu
,
D. L.
,
Zhao
,
H. G.
,
Liu
,
Y. Z.
, and
Wen
,
X. S.
,
2008
, “
Study on the Vibration Band Gap and Vibration Attenuation Property of Phononic Crystals
,”
Sci. China Ser. E-Technol. Sci.
,
51
, pp.
85
99
.10.1007/s11431-008-0008-x
17.
Johnson
,
S. G.
, and
Joannopoulos
,
J. D.
,
2002
,
Photonic Crystal: The Road From Theory to Practice
,
Kluwer
,
Boston
.
18.
Langley
,
R. S.
, and
Bardell
,
N. S.
,
1998
, “
A Review of Current Analysis Capabilities Applicable to the High Frequency Vibration Prediction of Aerospace Structures
,”
Aeronaut. J.
,
102
, pp.
287
297
.
19.
Cremer
,
L.
,
Heckl
,
M.
, and
Petersson
,
B. A. T.
,
2005
,
Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies
,
3rd ed.
,
Springer
,
Berlin
.
20.
Tassilly
,
E.
,
1987
, “
Propagation of Bending Waves in a Periodic Beam
,”
Int. J. Eng. Sci.
,
25
(
1
), pp.
85
94
.10.1016/0020-7225(87)90136-4
21.
Lee
,
S. Y.
,
Ke
,
H. Y.
, and
Kao
,
M. J.
,
1990
, “
Flexural Waves in a Periodic Beam
,”
ASME J. Appl. Mech.
,
57
, pp.
779
783
.10.1115/1.2897092
22.
Bardell
,
N. S.
,
Langley
,
R. S.
,
Dunsdon
,
J. M.
, and
Klein
,
T.
,
1996
, “
The Effect of Period Asymmetry on Wave Propagation in Periodic Beams
,”
J. Sound Vib.
,
197
(
4
), pp.
427
445
.10.1006/jsvi.1996.0541
23.
Belotserkovskiy
,
P. M.
,
1996
, “
On the Oscillations of Infinite Periodic Beams Subjected to a Moving Concentrated Force
,”
J. Sound Vib.
,
193
(
3
), pp.
705
712
.10.1006/jsvi.1996.0309
24.
Cheng
,
C.-C.
, and
Chui
,
C.-M.
,
1999
, “
Sound Radiation From Periodically Spring-Supported Beams Under the Action of a Convected Uniform Harmonic Loading
,”
J. Sound Vib.
,
226
(
1
), pp.
83
99
.10.1006/jsvi.1999.2279
25.
Richards
,
D.
, and
Pines
,
D. J.
,
2003
, “
Passive Reduction of Gear Mesh Vibration Using a Periodic Drive Shaft
,”
J. Sound Vib.
,
264
, pp.
317
342
.10.1016/S0022-460X(02)01213-0
26.
Wen
,
J. H.
,
Wang
,
G.
,
Yu
,
D. L.
,
Zhao
,
H. G.
, and
Liu
,
Y. Z.
,
2005
, “
Theoretical and Experimental Investigation of Flexural Wave Propagation in Straight Beams With Periodic Structures: Application to a Vibration Isolation Structure
,”
J. Appl. Phys.
,
97
, p.
114907
.10.1063/1.1922068
27.
Gei
,
M.
,
Movchan
,
A. B.
, and
Bigoni
,
D.
,
2009
, “
Band-Gap Shift and Defect-Induced Annihilation in Prestressed Elastic Structures
,”
J. Appl. Phys.
,
105
, p.
063507
.10.1063/1.3093694
28.
Yan
,
Z.-Z.
,
Zhang
,
C.
, and
Wang
,
Y.-S.
,
2009
, “
Attenuation and Localization of Bending Waves in a Periodic/Disordered Fourfold Composite Beam
,”
J. Sound Vib.
,
327
, pp.
109
120
.10.1016/j.jsv.2009.06.009
29.
Díaz-de-Anda
,
A.
,
Pimentel
,
A.
,
Flores
,
J.
,
Morales
,
A.
,
Gutiérrez
,
L.
, and
Méndez-Sánchez
,
R. A.
,
2005
, “
Locally Periodic Timoshenko Rod: Experiment and Theory
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2814
2819
.10.1121/1.1880732
30.
Xiang
,
H.-J.
, and
Shi
,
Z.-F.
,
2009
, “
Analysis of Flexural Vibration Band Gaps in Periodic Beams Using Differential Quadrature Method
,”
Comput. Struct.
,
87
, pp.
1559
1566
.10.1016/j.compstruc.2009.07.009
31.
Cheng
,
C.-C.
,
Kuo
,
C.-P.
, and
Yang
,
J.-W.
,
2000
, “
Wavenumber-Harmonic Analysis of a Periodically Supported Beam Under the Action of a Convected Loading
,”
ASME J. Vib. Acoust.
,
122
, pp.
272
280
.10.1115/1.1302705
32.
Cheng
,
C.-C.
,
Kuo
,
C.-P.
, and
Yang
,
J.-W.
,
2001
, “
A Note on the Vibro-Acoustic Response of a Periodically Supported Beam Subjected to a Traveling, Time-Harmonic Loading
,”
J. Sound Vib.
,
239
(
3
), pp.
531
544
.10.1006/jsvi.2000.3163
33.
Brunskog
,
J.
,
2005
, “
A Wave Approach to Structural Transmission Loss in Periodic Structures: Thin Beam Case
,”
Acta. Acust. Acust.
,
91
(
1
), pp.
91
102
.
34.
Liu
,
Y. Z.
,
Yu
,
D. L.
,
Zhao
,
H. G.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2007
, “
Design Guidelines for Flexural Wave Attenuation of Slender Beams With Local Resonators
,”
Phys. Lett. A
,
362
, pp.
344
347
.10.1016/j.physleta.2006.10.056
35.
Yu
,
D. L.
,
Liu
,
Y. Z.
,
Wang
,
G.
,
Zhao
,
H. G.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Timoshenko Beams With Locally Resonant Structures
,”
J. Appl. Phys.
,
100
, p.
124901
.10.1063/1.2400803
36.
Yu
,
D. L.
,
Liu
,
Y. Z.
,
Zhao
,
H. G.
,
Wang
,
G.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Locally Resonant Structures With Two Degrees of Freedom
,”
Phys. Rev. B
,
73
, p.
064301
.10.1103/PhysRevB.73.064301
37.
Wang
,
G.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2005
, “
Quasi-One-Dimensional Phononic Crystals Studied Using the Improved Lumped-Mass Method: Application to Locally Resonant Beams With Flexural Wave Band Gap
,”
Phys. Rev. B
,
71
, p.
104302
.10.1103/PhysRevB.71.104302
38.
Xiao
,
Y.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2012
, “
Broadband Locally Resonant Beams Containing Multiple Periodic Arrays of Attached Resonators
,”
Phys. Lett. A
,
376
, pp.
1384
1390
.10.1016/j.physleta.2012.02.059
39.
Yu
,
D. L.
,
Wen
,
J. H.
,
Shen
,
H. J.
,
Xiao
,
Y.
, and
Wen
,
X. S.
,
2012
, “
Propagation of Flexural Wave in Periodic Beam on Elastic Foundations
,”
Phys. Lett. A
,
376
, pp.
626
630
.10.1016/j.physleta.2011.11.056
40.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
, p.
011003
.10.1115/1.4004592
41.
Guo
,
Y. Q.
,
2008
, “
The Method of Reverberation-Ray Matrix and its Applications (in Chinese)
,” Ph.D. thesis, Zhejiang University, Hangzhou, China.
42.
Pao
,
Y. H.
, and
Chen
,
W. Q.
,
2009
, “
Elastodynamic Theory of Framed Structures and Reverberation-Ray Matrix Analysis
,”
Acta Mech.
,
204
, pp.
61
79
.10.1007/s00707-008-0012-z
43.
Doyle
,
J. F.
,
1997
,
Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms
,
2nd ed.
,
Springer
,
New York
.
44.
Guo
,
Y. Q.
, and
Fang
,
D. N.
,
2011
, “
Formation of Longitudinal Wave Band Structures in One-Dimensional Phononic Crystals
,”
J. Appl. Phys.
,
109
(
7
), p.
073515
.10.1063/1.3567911
45.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.10.1016/S0022-460X(70)80062-1
You do not currently have access to this content.