Compaction bands are narrow, roughly planar zones of localized deformation, in which the shear is less than or comparable to compaction. Although there are differences in their appearance in the field and in laboratory specimens, they have been observed in both for high-porosity (greater than about 15%) sandstones. Because the porosity in them is reduced and the tortuosity increased, they inhibit fluid flow perpendicular to their plane. Consequently, they can alter patterns of fluid movement in formations in which they occur and are relevant to applications involving fluid injection or withdrawal. Formation of compaction bands is predicted by a framework that treats localized deformation as a bifurcation from homogeneous deformation. This paper gives a brief overview of compaction localization but focuses on field and laboratory observations that constrain two parameters entering the bifurcation analysis: a friction coefficient μ and a dilatancy factor β. The inferred values suggest that normality (μ = β) is not satisfied, and compaction localization occurs on a transitional portion of the yield surface, where the local slope in a plot of Mises equivalent shear stress versus compressive mean normal stress changes from positive (μ > 0) to negative (μ < 0). These inferences are at odds with critical state and cap theories that typically assume normality and predict dilation on the portion of the surface where μ > 0. In addition, the values suggest that the critical state (μ = 0) does not necessarily correspond to zero volume change.

References

References
1.
Sun
,
W.
,
Andrade
,
J. E.
,
Rudnicki
,
J. W.
, and
Eichhubl
,
P.
,
2011
, “
Connecting Microstructural Attributes and Permeability From 3D Topographic Images of In Situ Shear-Enhanced Compaction Bands Using Multiscale Computations
,”
Geophys. Res. Lett.
,
38
, p.
L10302
.10.1029/2011GL047683
2.
Hill
,
R. E.
,
1989
. “
Analysis of Deformation Bands in the Aztec Sandstone, Valley of Fire State Park, Nevada
,” Master's thesis, University of Nevada, Las Vegas.
3.
Mollema
,
P.
, and
Antonellini
,
M. A.
,
1996
, “
Compaction Bands: A Structural Analog for Anti-Mode I Cracks in Aeolian Sandstone
,”
Tectonophysics
,
267
, pp.
209
228
.10.1016/S0040-1951(96)00098-4
4.
Schultz
,
R. A.
,
2009
, “
Scaling and Paleodepth of Compaction Bands, Nevada and Utah
,”
J. Geophys. Res.
,
114
, p.
B03407
.10.1029/2008JB005876
5.
Sternlof
,
K. R.
,
Chapin
,
J. R.
,
Pollard
,
D. D.
, and
Durlofsky
,
L. J.
,
2004
, “
Permeability Effects of Deformation Band Arrays in Sandstone
,”
Am. Assoc. Pet. Geol. Bull.
,
88
(9), pp.
1315
1329
.
6.
Sternlof
,
K. R.
,
Rudnicki
,
J. W.
, and
Pollard
,
D. D.
,
2005
, “
Anti-Crack Inclusion Model for Compaction Bands in Sandstone
,”
J. Geophys. Res.
,
110
, p.
B11403
.10.1029/2005JB003764
7.
Aydin
,
A.
, and
Ahmadov
,
R.
,
2009
, “
Bed-Parallel Compaction Bands in Aeolian Sandstone: Their Identification, Characterization and Implications
,”
Tectonophysics
,
479
, pp.
277
284
.10.1016/j.tecto.2009.08.033
8.
Ballas
,
G.
,
Soliva
,
R.
,
Sizun
,
J.-P.
,
Fossen
,
H.
,
Benedicto
,
A.
, and
Skurtveit
,
E.
,
2013
, “
Shear-Enhanced Compaction Bands Formed at Shallow Burial Conditions: Implications for Fluid Flow (Provence, France)
,”
J. Struct. Geol.
,
47
, pp.
3
15
.10.1016/j.jsg.2012.11.008
9.
Baud
,
P.
,
Klein
,
E.
, and
Wong
,
T.-F.
,
2004
, “
Compaction Localization in Porous Sandstones: Spatial Evolution of Damage and Acoustic Emission Activity
,”
J. Struct. Geol.
,
26
, pp.
603
624
.10.1016/j.jsg.2003.09.002
10.
Wong
,
T.-F.
,
Baud
,
P.
, and
Klein
,
E.
,
2001
, “
Localized Failure Modes in a Compactant Porous Rock
,”
Geophys. Res. Lett.
,
28
(
13
), pp.
2521
2524
.10.1029/2001GL012960
11.
Tembe
,
S.
,
Baud
,
P.
, and
Wong
,
T.-F.
,
2008
, “
Stress Conditions for the Propagation of Discrete Compaction Bands in Porous Sandstone
,”
J. Geophys. Res.
,
113
, p.
B09409
.10.1029/2007JB005439
12.
Olsson
,
W. A.
,
2001
, “
Quasistatic Propagation of Compaction Fronts in Porous Rocks
,”
Mech. Mater.
,
33
, pp.
659
668
.10.1016/S0167-6636(01)00078-3
13.
Papka
,
S. D.
, and
Kyriakides
,
S.
,
1998
, “
Experiments and Full-Scale Numerical Simulations of In-Plane Crushing of a Honeycomb
,”
Acta Metall.
,
46
(
8
), pp.
2765
2776
.10.1016/S1359-6454(97)00453-9
14.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1975
, “
Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
, pp.
371
394
.10.1016/0022-5096(75)90001-0
15.
Issen
,
K. A.
, and
Rudnicki
,
J. W.
,
2000
, “
Conditions for Compaction Bands in Porous Rock
,”
J. Geophys. Res.
,
105
, pp.
21529
21536
.10.1029/2000JB900185
16.
Bésuelle
,
P.
, and
Rudnicki
,
J. W.
,
2004
, “
Localization: Shear Bands and Compaction Bands
,”
Mechanics of Fluid Saturated Rocks (International Geophysics Series
, Vol.
89
),
Y.
Guéguen
and
M.
Boutéca
, eds.,
Academic
,
New York
, pp.
219
321
.
17.
Rudnicki
,
J. W.
,
2004
, “
Shear and Compaction Band Formation on an Elliptic Yield Cap
,”
J. Geophys. Res.
,
109
, p.
B03402
.10.1029/2003JB002633
18.
Challa
,
V.
, and
Issen
,
K. A.
,
2004
, “
Conditions for Compaction Band Formation in Porous Rock Using a Two-Yield Surface Model
,”
J. Eng. Mech.
,
130
(
9
), pp.
1089
1097
.10.1061/(ASCE)0733-9399(2004)130:9(1089)
19.
Bernard
,
X. D.
,
Eichhubl
,
P.
, and
Aydin
,
A.
,
2002
, “
Dilation Bands: A New Form of Localized Failure in Granular Media
,”
Geophys. Res. Lett.
,
29
(
4
), p.
2176
.10.1029/2002GL015966
20.
Bésuelle
,
P.
,
2001
, “
Compacting and Dilating Shear Bands in Porous Rock: Theoretical and Experimental Conditions
,”
J. Geophys. Res.
,
106
(
B7
), pp.
13435
13442
.10.1029/2001JB900011
21.
Eichhubl
,
P.
,
Hooker
,
J. N.
, and
Laubach
,
S.
,
2010
, “
Pure and Shear-Enhanced Compaction Bands in Aztec Sandstone
,”
J. Struct. Geol.
,
32
, pp.
1873
1886
.10.1016/j.jsg.2010.02.004
22.
Schofield
,
A. N.
, and
Wroth
,
P.
,
1968
,
Critical State Soil Mechanics
,
McGraw-Hill
,
New York
.
23.
Dimaggio
,
F. L.
, and
Sandler
,
I. S.
,
1971
, “
Material Model for Granular Soils
,”
J. Engrg. Mech. Div.
,
97
, pp.
935
950
.
24.
Baud
,
P.
,
Vajdova
,
V.
, and
Wong
,
T.-F.
,
2006
, “
Shear-Enhanced Compaction and Strain Localization: Inelastic Deformation and Constitutive Modeling of Four Porous Sandstones
,”
J. Geophys. Res.
,
111
, p.
B12401
.10.1029/2005JB004101
25.
Wong
,
T.
,
2011
, private communication
26.
Carroll
,
M. M.
,
1991
, “
A Critical State Plasticity Theory for Porous Reservoir Rock
,”
Recent Advances in Mechanics of Structured Continua
, Vol.
117
,
M.
Massoudi
and
K. R.
Rajagopal
, eds.,
Applied Mechanics Division, ASME
,
New York
, pp.
1
8
.
27.
Rudnicki
,
J. W.
,
2007
, “
Models for Compaction Band Propagation
,”
Geol. Soc., London, Spec. Pub.
,
284
, pp.
107
125
.10.1144/SP284.8
28.
Sternlof
,
K. R.
,
2006
, “
Structural Geology, Propagation Mechanics and Hydraulic Effects of Compaction Bands in Sandstone
,” Ph.D. thesis, Stanford University, Stanford, CA.
29.
Sternlof
,
K.
, and
Pollard
,
D.
,
2002
, “
Numerical Modeling of Compactive Deformation Bands as Granular Anti-Cracks
,”
EOS Trans. Am. Geophys. Union
,
83
, p.
F1347
.
30.
Fletcher
,
R. C.
, and
Pollard
,
D. D.
,
1981
, “
Anticrack Model for Pressure Solution Surfaces
,”
Geology
,
9
, pp.
419
424
.10.1130/0091-7613(1981)9<419:AMFPSS>2.0.CO;2
31.
Rudnicki
,
J. W.
,
Tembe
,
S.
, and
Wong
,
T.-F.
,
2006
, “
Relation Between Width and Length of Compaction Bands in Porous Sandstones
,”
EOS Trans. Am. Geophys. Union
, Vol. 87, Fall Meet. Suppl., Abstract T43A-1633.
32.
Fortin
,
J.
,
Schubnel
,
A.
, and
Guéguen
,
Y.
,
2005
, “
Elastic Wave Velocities and Permeability Evolution During Compaction of Bleuswiller Sandstone
,”
Int. J. Rock Mech. Min. Sci.
,
42
(
7-8
), pp.
873
889
.10.1016/j.ijrmms.2005.05.002
33.
Rice
,
J. R.
,
1968
, “
Mathematical Analysis in the Mechanics of Fracture
,”
Fracture: An Advanced Treatise
, Vol.
2
,
H.
Liebowitz
, ed.,
Academic
,
New York
, pp.
191
311
.
34.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.10.1115/1.3601206
35.
Vajdova
,
V.
, and
Wong
,
T.-F.
,
2003
, “
Incremental Propagation of Discrete Compaction Bands and Microstructural Observations on Circumferentially Notched Samples of Bentheim Sandstone
,”
Geophys. Res. Lett.
,
30
(
14
), p.
1775
.10.1029/2003GL017750
36.
Tembe
,
S.
,
Vajdova
,
V.
,
Wong
,
T.-F.
, and
Zhu
,
W.
,
2006
, “
Initiation and Propagation of Strain Localization in Circumferentially Notched Samples of Two Porous Sandstones
,”
J. Geophys. Res.
,
111
, p.
B02409
.10.1029/2005JB003611
You do not currently have access to this content.