The approach regarding the plastic process as a constrained optimization problem (Simo, J. C., and Hughes, T. J. R., 1998, Computational Inelasticity, Springer, New York) is discussed and found to be limited in considering nonlinear kinematic hardening and mechanical dissipation. These limitations are virtually common in elastoplastic modeling in both theoretical studies and industrial applications. A modified maximum mechanical dissipation principle is proposed to overcome the limitations and form an energy-based framework of nonlinear hardening laws. With the control functions introduced into the framework, not only are the relationships between existing hardening models clarified against their ad hoc origins, but modeling nonsaturating kinematic hardening behavior is also achieved. Numerical examples are presented to illustrate the capability of the nonsaturating kinematic hardening model to describe the phenomena of the permanent softening as well as the cyclic loading. These applications indicate the concept of the control function can be nontrivial in material modeling. Finally, the methodology is also extended to incorporate the multiterm approach.

References

References
1.
Cao
,
J.
,
Lee
,
W.
,
Cheng
,
H. S.
,
Seniw
,
M.
,
Wang
,
H.-P.
, and
Chung
,
K.
,
2009
, “
Experimental and Numerical Investigation of Combined Isotropic-Kinematic Hardening Behavior of Sheet Metals
,”
Int. J. Plast.
,
25
(
5
), pp.
942
972
.10.1016/j.ijplas.2008.04.007
2.
Kim
,
D.
,
Lee
,
W.
,
Kim
,
J.
,
Chung
,
K.-H.
,
Kim
,
C.
,
Okamoto
,
K.
,
Wagoner
,
R. H.
, and
Chung
,
K.
,
2010
, “
Macro-Performance Evaluation of Friction Stir Welded Automotive Tailor-Welded Blank Sheets—Part II : Formability
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
1063
1081
.10.1016/j.ijsolstr.2009.12.021
3.
Chung
,
K.
,
Lee
,
W.
,
Kim
,
D.
,
Kim
,
J.
,
Chung
,
K.-H.
,
Kim
,
C.
,
Okamoto
,
K.
, and
Wagoner
,
R. H.
,
2010
, “
Macro-Performance Evaluation of Friction Stir Welded Automotive Tailor-Welded Blank Sheets—Part I : Material Properties
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
1048
1062
.10.1016/j.ijsolstr.2009.12.022
4.
Dafalias
,
Y. F.
,
Kourousis
,
K. I.
, and
Saridis
,
G. J.
,
2008
, “
Corrigendum to ‘Multiplicative AF Kinematic Hardening in Plasticity' (International Journal of Solids and Structures 45 (2008) 2861–2880)
,”
Int. J. Solids Struct.
,
45
(
17
), pp.
4878
.10.1016/j.ijsolstr.2008.04.010
5.
Dafalias
,
Y. F.
,
Kourousis
,
K. I.
, and
Saridis
,
G. J.
,
2008
, “
Multiplicative AF Kinematic Hardening in Plasticity
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2861
2880
.10.1016/j.ijsolstr.2008.01.001
6.
Abdel-Karim
,
M
.,
2009
, “
Modified Kinematic Hardening Rules for Simulations of Ratchetting
,”
Int. J. Plast.
,
25
(
8
), pp.
1560
1587
.10.1016/j.ijplas.2008.10.004
7.
Sansour
,
C.
,
Karsaj
,
I.
, and
Soric
,
J.
,
2006
, “
On Free Energy-Based Formulations for Kinematic Hardening and the Decomposition F = F(P)F(E)
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7534
7552
.10.1016/j.ijsolstr.2006.03.011
8.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” Technical Report, Berkeley Nuclear Laboratories, Berkeley, UK.
9.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
10.
Badreddine
,
H.
,
Saanouni
,
K.
, and
Dogui
,
A.
,
2010
, “
On Non-Associative Anisotropic Finite Plasticity Fully Coupled With Isotropic Ductile Damage for Metal Forming
,”
Int. J. Plast.
,
26
(
11
), pp.
1541
1575
.10.1016/j.ijplas.2010.01.008
11.
Arghavani
,
J.
,
Auricchio
,
F.
, and
Naghdabadi
,
R.
,
2011
, “
A Finite Strain Kinematic Hardening Constitutive Model Based on Hencky Strain: General Framework, Solution Algorithm and Application to Shape Memory Alloys
,”
Int. J. Plast.
,
27
(
6
), pp.
940
961
.10.1016/j.ijplas.2010.10.006
12.
Halphen
,
B.
, and
Nguyen
Quoc
,
S.
,
1975
, “
On Generalized Standard Materials
,”
J. Mec.
,
14
(
1
), pp.
39
63
.
13.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
14.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
, Computational Inelasticity, Interdisciplinary Applied Mathematics,
Springer
,
New York
.
15.
Voyiadjis
,
G. Z.
, and
Abu
Al-Rub
,
R. K.
,
2003
, “
Thermodynamic Based Model for the Evolution Equation of the Backstress in Cyclic Plasticity
,”
Int. J. Plast.
,
19
(
12
), pp.
2121
2147
.10.1016/S0749-6419(03)00062-7
16.
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
, Convex Optimization,
Cambridge University Press
,
New York
.
17.
Ziegler
,
H.
,
1983
,
An Introduction to Thermomechanics, North-Holland Series in Applied Mathematics and Mechanics
,
North-Holland Publishers
,
Amsterdam
.
18.
Erlicher
,
S.
, and
Point
,
N.
,
2006
, “
Endochronic Theory, Non-Linear Kinematic Hardening Rule and Generalized Plasticity: A New Interpretation Based on Generalized Normality Assumption
,”
Int. J. Solids Struct.
,
43
(
14–15
), pp.
4175
4200
.10.1016/j.ijsolstr.2005.03.022
19.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part I: Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
,
9
(
3
), pp.
375
390
.10.1016/0749-6419(93)90042-O
20.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery—Part II: Application to Experiments of Ratchetting Behavior
,”
Int. J. Plast.
,
9
(
3
), pp.
391
403
.10.1016/0749-6419(93)90043-P
21.
Ristinmaa
,
M.
,
Wallin
,
M.
, and
Ottosen
,
N.
,
2007
, “
Thermodynamic Format and Heat Generation of Isotropic Hardening Plasticity
,”
Acta Mech.
,
194
(
1
), pp.
103
121
.10.1007/s00707-007-0448-6
22.
Henann
,
D. L.
, and
Anand
,
L.
,
2009
, “
A Large Deformation Theory for Rate-Dependent Elastic-Plastic Materials With Combined Isotropic and Kinematic Hardening
,”
Int. J. Plast.
,
25
(
10
), pp.
1833
1878
.10.1016/j.ijplas.2008.11.008
23.
Mises
,
R. V.
,
1928
, “
Mechanik Der Plastischen Formänderung Von Kristallen
,”
ZAMM
,
8
(
3
), pp.
161
185
.10.1002/zamm.19280080302
24.
Hill
,
R
.,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
,
193
(
1033
), pp.
281
297
.10.1098/rspa.1948.0045
25.
Barlat
,
F.
,
Yoon
,
J. W.
, and
Cazacu
,
O.
,
2007
, “
On Linear Transformations of Stress Tensors for the Description of Plastic Anisotropy
,”
Int. J. Plast.
,
23
(
5
), pp.
876
896
.10.1016/j.ijplas.2006.10.001
26.
Haddadi
,
H.
,
Bouvier
,
S.
,
Banu
,
M.
,
Maier
,
C.
, and
Teodosiu
,
C.
,
2006
, “
Towards an Accurate Description of the Anisotropic Behaviour of Sheet Metals Under Large Plastic Deformations: Modelling, Numerical Analysis and Identification
,”
Int. J. Plast.
,
22
(
12
), pp.
2226
2271
.10.1016/j.ijplas.2006.03.010
27.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Li
,
G.
,
2011
, “
A Thermodynamic Consistent Damage and Healing Model for Self Healing Materials
,”
Int. J. Plast.
,
27
(
7
), pp.
1025
1044
.10.1016/j.ijplas.2010.11.002
28.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
29.
Prager
,
W
.,
1956
, “
A New Method of Analyzing Stresses and Strains in Work Hardening Plastic Solids
,”
ASME J. Applied Mech.
,
23
(
1
), pp.
493
496
.
30.
Chen
,
X.
,
Jiao
,
R.
, and
Kim
,
K. S.
,
2005
, “
On the Ohno–Wang Kinematic Hardening Rules for Multiaxial Ratcheting Modeling of Medium Carbon Steel
,”
Int. J. Plast.
,
21
(
1
), pp.
161
184
.10.1016/j.ijplas.2004.05.005
31.
Abdel-Karim
,
M
.,
2010
, “
An Evaluation for Several Kinematic Hardening Rules on Prediction of Multiaxial Stress-Controlled Ratchetting
,”
Int. J. Plast.
,
26
(
5
), pp.
711
730
.10.1016/j.ijplas.2009.10.002
32.
Truesdell
,
C.
,
Noll
,
W.
, and
Antman
,
S. S.
,
2004
,
The Non-Linear Field Theories of Mechanics
,
Springer
,
Berlin
.10.1007/978-3-662-10388-3
33.
Xiao
,
Y.
,
Chen
,
J.
, and
Cao
,
J.
,
2012
, “
A Generalized Thermodynamic Approach for Modeling Nonlinear Hardening Behaviors
,”
Int. J. Plast.
,
38
(
0
), pp.
102
122
.10.1016/j.ijplas.2012.05.004
34.
Chaboche
,
J. L.
,
Dang-Van
,
K.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,”
Proceedings of the 5th International Conference on Structural Mechanics in Reactor Technology (SMiRT), Berlin, August 13–17
.
35.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
.10.1016/0749-6419(91)90050-9
36.
Guo
,
S.
,
Kang
,
G.
, and
Zhang
,
J.
,
2011
, “
Meso-Mechanical Constitutive Model for Ratchetting of Particle-Reinforced Metal Matrix Composites
,”
Int. J. Plast.
,
27
(
12
), pp.
1896
1915
.10.1016/j.ijplas.2011.01.001
37.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
,
Elsevier Butterworth–Heinemann
,
Woburn, MA
.
38.
Chun
,
B. K.
,
Kim
,
H. Y.
, and
Lee
,
J. K.
,
2002
, “
Modeling the Bauschinger Effect for Sheet Metals—Part II: Applications
,”
Int. J. Plast.
,
18
(
5–6
), pp.
597
616
.10.1016/S0749-6419(01)00047-X
39.
Geng
,
L.
,
Shen
,
Y.
, and
Wagoner
,
R. H.
,
2002
, “
Anisotropic Hardening Equations Derived From Reverse-Bend Testing
,”
Int. J. Plast.
,
18
(
5–6
), pp.
743
767
.10.1016/S0749-6419(01)00048-1
40.
Chun
,
B. K.
,
Jinn
,
J. T.
, and
Lee
,
J. K.
,
2002
, “
Modeling the Bauschinger Effect for Sheet Metals—Part I: Theory
,”
Int. J. Plast.
,
18
(
5–6
), pp.
571
595
.10.1016/S0749-6419(01)00046-8
You do not currently have access to this content.