The modal interactions and nonlinear responses of inextensional beams resting on elastic foundations with two-to-one internal resonances are investigated and the primary resonance excitations are considered. The multimode discretization and the method of multiple scales are applied to obtain the modulation equations. The equilibrium and dynamic solutions of the modulation equations are examined by the Newton–Raphson, shooting, and continuation methods. Numerical simulations are performed to investigate the chaotic dynamics of the beam. It is shown that the nonlinear responses may undergo different bifurcations and exhibit rich nonlinear phenomena. Finally, the effects of the foundation models on the nonlinear interactions of the beam are examined.

References

References
1.
Cheng
,
F. Y.
, and
Pantelides
,
C. P.
,
1988
, “
Dynamic Timoshenko Beam-Columns on Elastic Media
,”
J. Struct. Eng.
,
114
, pp.
1524
1550
.10.1061/(ASCE)0733-9445(1988)114:7(1524)
2.
Lai
,
Y. C.
,
Ting
,
B. Y.
,
Lee
,
W. S.
, and
Becker
,
B. R.
,
1992
, “
Dynamic Response of Beams on Elastic Foundation
,”
J. Struct. Eng.
,
118
, pp.
853
858
.10.1061/(ASCE)0733-9445(1992)118:3(853)
3.
Thambiratnam
,
D.
, and
Zhuge
,
Y.
,
1996
, “
Free Vibration Analysis of Beams on Elastic Foundation
,”
Comput. Struct.
,
60
, pp.
971
980
.10.1016/0045-7949(96)00053-3
4.
Valsangkar
,
A. J.
, and
Pradhanang
,
R.
,
1988
, “
Vibrations of Beam-Columns on Two-Parameter Elastic Foundations
,”
Earthquake Eng. Struct. Dyn.
,
16
, pp.
217
225
.10.1002/eqe.4290160205
5.
Wang
,
L.
,
Ma
,
J.
,
Zhao
,
Y.
, and
Liu
,
Q.
,
2012
, “
Refined Modeling and Free Vibration of Inextensional Beams on the Elastic Foundation
,”
ASME J. Appl. Mech.
(in press).10.1115/1.4023032
6.
Zhu
,
B.
, and
Leung
,
A. Y. T.
,
2009
, “
Linear and Nonlinear Vibration of Non-Uniform Beams on Two-Parameter Foundations Using p-Elements
,”
Comput. Geotech.
,
36
, pp.
743
750
.10.1016/j.compgeo.2008.12.006
7.
Coskun
,
I.
, and
Engin
,
H.
,
1999
, “
Non-Linear Vibrations of a Beam on an Elastic Foundation
,”
J. Sound Vib.
,
223
, pp.
335
354
.10.1006/jsvi.1998.1973
8.
Nayfeh
,
A. H.
, and
Lacarbonara
,
W.
,
1997
, “
On the Discretization of Distributed-Parameter Systems With Quadratic and Cubic Nonlinearities
,”
Nonlinear Dyn.
,
13
, pp:
203
220
.10.1023/A:1008253901255
9.
Ansari
,
M.
,
Esmailzadeh
,
E.
, and
Younesian
,
D.
,
2010
, “
Internal-External Resonance of Beams on Non-Linear Viscoelastic Foundation Transversed by Moving Load
,”
Nonlinear Dyn.
,
61
, pp.
163
182
.10.1007/s11071-009-9639-0
10.
Pellicano
,
F.
, and
Mastroddi
,
F.
,
1997
, “
Nonlinear Dynamics of a Beam on Elastic Foundation
,”
Nonlinear Dyn.
,
14
, pp.
335
355
.10.1023/A:1008297721253
11.
Pellicano
,
F.
, and
Vakakis
,
A. F.
,
2001
, “
Normal Modes and Boundary Layers for a Slender Tensioned Beam on a Nonlinear Foundation
,”
Nonlinear Dyn.
,
25
, pp.
79
93
.10.1023/A:1012986128976
12.
Lacarbonara
,
W.
,
Rega
,
G.
, and
Nayfeh
,
A. H.
,
2003
, “
Resonant Non-Linear Normal Modes. Part I: Analytical Treatment for Structural One-Dimensional Systems
,”
Int. J. Non-Linear Mech.
,
38
, pp.
851
872
.10.1016/S0020-7462(02)00033-1
13.
Nayfeh
,
A. H.
,
2000
,
Non-Linear Interactions
,
Wiley-Interscience
,
New York
.
14.
Feng
,
Z. C.
, and
Leal
,
L. G.
,
1995
, “
Symmetries of the Amplitude Equations of an Inextensional Beam With Internal Resonance
,”
ASME J. Appl. Mech.
,
62
, pp.
235
238
.10.1115/1.2895911
15.
Srinil
,
N.
, and
Rega
,
G.
,
2007
, “
The Effects of Kinematic Condensation on Internally Resonant Forced Vibrations of Shallow Horizontal Cables
,”
Int. J. Non-Linear Mech.
,
42
, pp.
180
195
.10.1016/j.ijnonlinmec.2006.09.005
16.
Minitab
,
2003
, “
Mett MINITAB
,” Release 14 for Windows, 1st ed, Minitab Inc., State College, PA.
17.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1994
,
Applied Nonlinear Dynamics
,
Wiley-Interscience
,
New York
.
18.
Wang
,
L.
,
Zhao
,
Y.
, and
Rega
,
G.
,
2009
, “
Multimode Dynamics and Out-of-Plane Drift in Suspended Cable Using the Kinematically Condensed Model
,”
ASME J. Vibr. Acoust.
,
131
, p.
061008
.10.1115/1.4000470
You do not currently have access to this content.