Vibration energy harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power the microsystems of the future. Most current vibration energy harvesters (VEH) are based on a mass-spring structure: this introduces a resonance phenomenon that enables an increase of VEH output power (compared to nonresonant systems); however, the working frequency bandwidth is limited. Therefore, these devices are not able to harvest energy when ambient vibrations’ frequencies shift. To solve this problem and to increase the frequency band where power can be harvested, one solution consists in using nonlinear springs. This paper introduces H-shaped nonlinear springs, their model, and their benefits to improve VEH output powers. Simulations on real vibration sources show that the output power can be higher in nonlinear devices (up to +48%) compared to linear systems.

References

References
1.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
, pp.
1131
1143
.10.1016/S0140-3664(02)00248-7
2.
Despesse
,
G.
,
Jager
,
T.
,
Chaillout
,
J. J.
,
Léger
,
J. M.
,
Vassilev
,
A.
,
Basrour
,
S.
, and
Charlot
,
B.
,
2005
, “
Fabrication and Characterization of High Damping Electrostatic Micro Devices for Vibration Energy Scavenging
,”
Proceedings of the DTIP
, Montreux, Switzerland, June 1–3.
3.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
, pp.
R1
R21
.10.1088/0964-1726/16/3/R01
4.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
, pp.
R175
R195
.10.1088/0957-0233/17/12/R01
5.
Cook-Chennault
,
K. A.
,
Thambi
,
N.
, and
Sastry
,
A. M.
,
2008
. “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
17
, p.
043001
.10.1088/0964-1726/17/4/043001
6.
Saadon
,
S.
, and
Sidek
,
O.
,
2011
, “
A Review of Vibration-Based MEMS Piezoelectric Energy Harvesters
,”
Energy Convers. Manage.
,
52
, pp.
500
504
.10.1016/j.enconman.2010.07.024
7.
Nguyen
,
S.
, and
Halvorsen
,
E.
,
2011
, “
Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting
,”
JMEMS Lett.
20
, pp.
1225
1227
.10.1109/JMEMS.2011.2170824
8.
Ahmed Seddik
,
B.
,
Despesse
,
G.
,
Boisseau
S.
, and
Defay
,
E.
,
2012
, “
Strategies for Wideband Mechanical Energy Harvester
,”
Small Scale Energy Harvesting
,
Intech
,
New York
, Chap. 10.10.5772/51898
9.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
, pp.
1867
1897
.10.1177/1045389X10390249
10.
Amri
,
M.
,
Basset
,
P.
,
Cottone
,
F.
,
Galayko
,
D.
,
Najar
,
F.
, and
Bourouina
,
T.
,
2011
, “
Novel Nonlinear Spring Design for Wideband Vibration Energy Harvesters
,”
Proceedings of the PowerMEMS
2011, Seoul, Korea, November 15–18.
11.
Ando
,
B.
,
Baglio
,
S.
,
Trigona
,
C.
,
Dumas
,
N.
,
Latorre
,
L.
, and
Nouet
,
P.
,
2010
, “
Nonlinear Mechanism in MEMS Devices for Energy Harvesting Applications
,”
J. Micromech. Microeng.
,
20
, p.
125020
.10.1088/0960-1317/20/12/125020
12.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
, p.
080601
.10.1103/PhysRevLett.102.080601
13.
Ferrari
,
M.
,
Ferrari
, V
.
,
Guizzetti
,
M.
,
Ando
,
B.
,
Baglio
,
S.
, and
Trigona
,
C.
,
2009
, “
Improved Energy Harvesting From Wideband Vibrations by Nonlinear Piezoelectric Converters
,”
Proceedings of the Eurosensors’09
, Lausanne, Switzerland, September 6–9, pp.
1203
1206
.
14.
Quinn
,
D.
,
Triplett
,
A.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2011
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
J. Vib. Acoust.
,
133
, p.
011001
.10.1115/1.4002782
15.
Mann
,
B. P.
, and
Owens
,
B. A.
,
2010
, “
Investigations of a Nonlinear Energy Harvester With a Bistable Potential Well
,”
J. Sound VIb.
,
329
, pp.
1215
1226
.10.1016/j.jsv.2009.11.034
16.
Miki
,
D.
,
Honzumi
,
M.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
,
2010
, “
Large-Amplitude MEMS Electret Generator With Nonlinear Springs
,” Proceedings of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS’10), pp.
176
179
.
17.
Nguyen
,
D. S.
, and
Halvorsen
,
E.
,
2010
, “
Analysis of Vibration Energy Harvesters Utilizing a Variety of Nonlinear Springs
,”
Proceedings of the PowerMEMS’10
, Leuven, Belgium, November 30–December 3, pp.
331
334
.
18.
Stanton
,
S. C.
, and
Mann
,
B. P.
,
2010
, “
Engaging Nonlinearity for Enhanced Vibratory Energy Harvesting
,” 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, April 12–15,
AIAA
Paper No. 2010-3067.10.2514/6.2010-3067
19.
Triplett
,
A.
, and
Quinn
,
D.
,
2009
, “
The Effect of Nonlinear Piezoelectric Coupling on Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
16
, pp.
1959
1967
.10.1177/1045389X09343218
20.
Kaajakari
,
K.
,
Mattila
,
T.
,
Oja
,
A.
, and
Seppa
,
H.
,
2004
, “
Nonlinear Limits for Single-Crystal Silicon Microresonators
,”
J. Microelectromech. Syst.
,
13
, pp.
715
724
.10.1109/JMEMS.2004.835771
21.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1999
,
Mechanics
,
3rd ed
,
Butterworth-Heinemann
,
Oxford, UK
.
22.
Legtenberg
,
R. A.
,
Groeneveld
,
W.
, and
Elwenspoek
,
M.
,
1996
, “
Comb-Drive Actuators for Large Displacements
,”
J. Micromech. Microeng.
,
6
, pp.
320
329
.10.1088/0960-1317/6/3/004
23.
Marzencki
,
M.
,
Defosseux
,
M.
, and
Basrour
,
S.
,
2009
, “
MEMS Vibration Energy Harvesting Devices With Passive Resonance Frequency Adaptation Capability
,”
J. Microelectromech. Syst.
,
18
, pp.
1444
1453
.10.1109/JMEMS.2009.2032784
24.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2005
,
Mechanics of Microelectromechanical Systems
,
Springer
,
New York
.
25.
Roundy
,
S. J.
,
2003
, “
Energy Scavenging for Wireless Sensor Nodes With a Focus on Vibration to Electricity Conversion
,” Ph.D. thesis, The University of California, Berkeley, Berkeley, CA.
26.
Reilly
,
E. K.
,
Miller
,
L. M.
,
Fain
,
R.
, and
Wright
,
P.
,
2009
, “
A Study of Ambient Vibrations for Piezoelectric Energy Conversion
,”
Proceedings of the PowerMEMS
, Washington, DC, December 1–4, pp.
312
315
.
27.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
17
, p.
065016
.10.1088/0964-1726/17/6/065016
28.
Boisseau
,
S.
,
Despesse
,
G.
, and
Ahmed Seddik
,
B.
,
2012
, “
Electrostatic Conversion for Vibration Energy Harvesting
,”
Small-Scale Energy Harvesting
,
Intech
,
New York
.
29.
Williams
,
C. B.
, and
Yates
,
R. B.
,
1996
, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators, A
,
52
, pp.
8
11
.10.1016/0924-4247(96)80118-X
30.
Senturia
,
S. D.
,
2000
,
Microsystem Design
,
Springer
,
New York
.
31.
Duffing
,
G.
,
1918
,
Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz
,
F. Vieweg u. Sohn
,
Braunschweig, Germany
.
32.
Wiggins
,
S.
,
1990
,
Application to the Dynamics of the Damped, Forced Duffing Oscillator, Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer-Verlag
,
New York
.
33.
Holmes
,
P.
, and
Rand
,
D.
,
1980
, “
Phase Portraits and Bifurcations of the Non-Linear Oscillator: x¨+(α+γx2)x˙+βx+δx3=0
,”
Int. J. Nonlinear Mech.
,
15
, pp.
449
458
.10.1016/0020-7462(80)90031-1
34.
Ueda
,
Y.
,
1980
, “
Explosion of Strange Attractors Exhibited by Duffing’s Equation
,”
Nonlinear Dynamics
,
R. H. G.
Helleman
, ed.,
Annals of the New York Academy of Sciences
,
New York
, pp.
422
434
.
35.
Burrow
,
S. G.
,
Clare
,
L. R.
,
Carella
,
A.
, and
Barton
,
D.
,
2008
, “
Vibration Energy Harvesters With Non-Linear Compliance
,” Procedings of the
SPIE
, Vol. 6928, Active and Passive Smart Structures and Integrated Systems.10.1117/12.776881
You do not currently have access to this content.