The effective thermoelastic properties of a fuzzy fiber-reinforced composite (FFRC) have been estimated by employing the generalized method of cells approach and the Mori–Tanaka method. The novel constructional feature of this fuzzy fiber-reinforced composite is that the uniformly aligned carbon nanotubes (CNTs) are radially grown on the circumferential surface of the horizontal carbon fibers. Effective thermoelastic properties of the fuzzy fiber-reinforced composite estimated by the generalized method of cells approach have been compared with those predicted by the Mori–Tanaka method. The present work concludes that the axial thermal expansion coefficient of the fuzzy fiber-reinforced composite slightly increases for the lower values of the carbon fiber volume fraction, whereas the transverse thermal expansion coefficient of the fuzzy fiber-reinforced composite significantly decreases over those of the composite without CNTs. Also, the results demonstrate that the effect of temperature variation on the effective thermal expansion coefficients of the fuzzy fiber-reinforced composite is negligible.

References

References
1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
, pp.
56
58
.10.1038/354056a0
2.
Ruoff
,
R. S.
, and
Lorents
,
D. C.
,
1995
, “
Mechanical and Thermal Properties of Carbon Nanotubes
,”
Carbon
,
33
(
7
), pp.
925
930
.10.1016/0008-6223(95)00021-5
3.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
, pp.
678
680
.10.1038/381678a0
4.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
,
79
(
7
), pp.
1297
1300
.10.1103/PhysRevLett.79.1297
5.
Popov
,
V. N.
,
Van Doren
,
V. E.
, and
Balkanski
,
M.
,
2000
, “
Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
61
(
4
), pp.
3078
3084
.10.1103/PhysRevB.61.3078
6.
Li
,
C.
, and
Chou
,
T. W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2487
2499
.10.1016/S0020-7683(03)00056-8
7.
Shen
,
L.
, and
Li
,
J.
,
2004
, “
Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
69
, p.
045414
.10.1103/PhysRevB.69.045414
8.
Kirtania
,
S.
, and
Chakraborty
,
D.
,
2007
, “
Finite Element Based Characterization of Carbon Nanotubes
,”
J. Reinf. Plast. Compos.
,
26
(
15
), pp.
1557
1570
.10.1177/0731684407079517
9.
Batra
,
R. C.
, and
Sears
,
A.
,
2007
, “
Uniform Radial Expansion/Contraction of Carbon Nanotubes and Their Transverse Elastic Moduli
,”
Modell. Simul. Mater. Sci. Eng.
,
15
, pp.
835
844
.10.1088/0965-0393/15/8/001
10.
Batra
,
R. C.
, and
Gupta
,
S. S.
,
2008
, “
Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061010
.10.1115/1.2965370
11.
Cheng
,
H. C.
,
Liu
,
Y. L.
,
Hsu
,
Y. C.
, and
Chen
,
W. H.
,
2009
, “
Atomistic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
,
46
, pp.
1695
1704
.10.1016/j.ijsolstr.2008.12.013
12.
Tsai
,
J. L.
,
Tzeng
,
S. H.
, and
Chiu
,
Y. T.
,
2010
, “
Characterizing Elastic Properties of Carbon Nanotube/Polyimide Nanocomposites Using Multi-Scale Simulation
,”
Composites
, Part B,
41
(
1
), pp.
106
115
.10.1016/j.compositesb.2009.06.003
13.
Jia
,
Z.
,
Wang
,
Z.
,
Xu
,
C.
,
Liang
,
J.
,
Wei
,
B.
,
Wu
,
D.
, and
Zhu
,
S.
,
1999
, “
Study on Poly(Methyl Methacrylate)/Carbon Nanotube Composites
,”
Mater. Sci. Eng. A
,
271
, pp.
395
400
.10.1016/S0921-5093(99)00263-4
14.
Haggenmueller
,
R.
,
Gommans
,
H. H.
,
Rinzler
,
A. G.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
,
2000
, “
Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods
,”
Chem. Phys. Lett.
,
330
, pp.
219
225
.10.1016/S0009-2614(00)01013-7
15.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
,
2003
, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1671
1687
.10.1016/S0266-3538(03)00063-0
16.
Liu
,
Y. J.
, and
Chen
,
X. L.
,
2003
, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
,
35
, pp.
69
81
.10.1016/S0167-6636(02)00200-4
17.
Lopez Manchado
,
M. A.
,
Valentini
,
L.
,
Biagiotti
,
J.
, and
Kenny
,
J, M.
,
2005
, “
Thermal and Mechanical Properties of Single-Walled Carbon Nanotubes-Polypropylene Composites Prepared by Melt Processing
,”
Carbon
,
43
(
7
), pp.
1499
1505
.10.1016/j.carbon.2005.01.031
18.
Gao
,
X. L.
, and
Li
,
K.
,
2005
, “
A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites
,”
Int. J. Solids Struct.
,
42
, pp.
1649
1667
.10.1016/j.ijsolstr.2004.08.020
19.
Seidel
,
G. D.
, and
Lagoudas
,
D, C.
,
2006
, “
Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composites
,”
Mech. Mater.
,
38
, pp.
884
907
.10.1016/j.mechmat.2005.06.029
20.
Ray
,
M. C.
, and
Batra
,
R. C.
,
2009
, “
Effective Properties of Carbon Nanotube and Piezoelectric Fiber-Reinforced Hybrid Smart Composites
,”
ASME J. Appl. Mech.
,
76
(
3
), p.
034503
.10.1115/1.3063633
21.
Tans
,
S. J.
,
Verschueren
,
A. R. M.
, and
Dekker
,
C.
,
1998
, “
Room-Temperature Transistor Based on a Single Carbon Nanotube
,”
Nature
,
393
(
6680
), pp.
49
52
.10.1038/29954
22.
Bachtold
,
A.
,
Hadley
,
P.
,
Nakanishi
,
T.
, and
Dekker
,
C.
,
2001
, “
Logic Circuits With Carbon Nanotube Transistors
,”
Science
,
294
(
5545
), pp.
1317
1320
.10.1126/science.1065824
23.
Derycke
,
V.
,
Martel
,
R.
,
Appenzeller
,
J.
, and
Avouris
,
Ph.
,
2001
, “
Controlling Doping and Carrier Injection in Carbon Nanotube Transistors
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2773
2775
.10.1063/1.1467702
24.
Leonard
,
F.
, and
Tersoff
,
J.
,
2002
, “
Multiple Functionality in Nanotube Transistors
,”
Phys. Rev. Lett.
,
88
(
25
), p.
258302
.10.1103/PhysRevLett.88.258302
25.
Bandow
,
S.
,
1997
, “
Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-Ray Diffraction
,”
Jpn. J. Appl. Phys., Part 2
,
36
(
10B
), pp.
1403
1405
.10.1143/JJAP.36.L1403
26.
Yosida
,
Y.
,
2000
, “
High-Temperature Shrinkage of Single-Walled Carbon Nanotube Bundles Up to 1600K
,”
J. Appl. Phys.
,
87
(
7
), pp.
3338
3341
.10.1063/1.372345
27.
Maniwa
,
Y.
,
Fujiwara
,
R.
,
Kira
,
H.
,
Tou
,
H.
,
Kataura
,
H.
,
Suzuki
,
S.
,
Achiba
,
Y.
,
Nishibori
,
E.
,
Takata
,
M.
,
Sakata
,
M.
,
Fujiwara
,
A.
, and
Suematsu
,
H.
,
2001
, “
Thermal Expansion of Single-Walled Carbon Nanotube (SWCNT) Bundles: X-Ray Diffraction Studies
,”
Phys. Rev. B
,
64
(
24
), p.
241402
.10.1103/PhysRevB.64.241402
28.
Jiang
,
H.
,
Liu
,
B.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2004
, “
Thermal Expansion of Single Wall Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
265
270
.10.1115/1.1752925
29.
Kwon
,
Y.
,
Berber
,
S.
, and
Tomanek
,
D.
,
2004
, “
Thermal Contraction of Carbon Fullerenes and Nanotubes
,”
Phys. Rev. Lett.
,
92
(
1
), p.
015901
.10.1103/PhysRevLett.92.015901
30.
Bower
,
C.
,
Zhu
,
W.
,
Jin
,
S.
, and
Zhou
,
O.
,
2000
, “
Plasma-Induced Alignment of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
77
(
6
), pp.
830
832
.10.1063/1.1306658
31.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
,
2000
, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
,
76
(
20
), pp.
2868
2870
.10.1063/1.126500
32.
Zhao
,
Z. G.
,
Ci
,
L. J.
,
Cheng
,
H. M.
, and
Bai
,
J. B.
,
2005
, “
The Growth of Multi-Walled Carbon Nanotubes With Different Morphologies on Carbon Fibers
,”
Carbon
,
43
, pp.
651
673
.10.1016/j.carbon.2004.10.010
33.
Veedu
,
V. P.
,
Cao
,
A.
,
Li
,
X.
,
Ma
,
K.
,
Soldano
,
C.
,
Kar
,
S.
,
Ajayan
,
P. M.
, and
Ghasemi-Nejhad
,
M. N.
,
2006
, “
Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests
,”
Nature Mater.
,
5
, pp.
457
462
.10.1038/nmat1650
34.
Qiu
,
J.
,
Zhang
,
C.
,
Wang
,
B.
, and
Liang
,
R.
,
2007
, “
Carbon Nanotube Integrated Multifunctional Multiscale Composites
,”
Nanotechnology
,
18
, p.
275708
.10.1088/0957-4484/18/27/275708
35.
Mathur
,
R. B.
,
Chatterjee
,
S.
, and
Singh
,
B. P.
,
2008
, “
Growth of Carbon Nanotubes on Carbon Fiber Substrates to Produce Hybrid/Phenolic Composites With Improved Mechanical Properties
,”
Compos. Sci. Technol.
,
68
, pp.
1608
1615
.10.1016/j.compscitech.2008.02.020
36.
Garcia
,
E. J.
,
Wardle
,
B. L.
,
Hart
,
A. J.
, and
Yamamoto
,
N.
,
2008
, “
Fabrication and Multifunctional Properties of a Hybrid Laminate With Aligned Carbon Nanotubes Grown In Situ
,”
Compos. Sci. Technol.
,
68
(
9
), pp.
2034
2041
.10.1016/j.compscitech.2008.02.028
37.
Zhang
,
Q.
,
Liu
,
J.
,
Sager
,
R.
,
Dai
,
L.
, and
Baur
,
J.
,
2009
, “
Hierarchical Composites of Carbon Nanotubes on Carbon Fiber: Influence of Growth Condition on Fiber Tensile Properties
,”
Compos. Sci. Technol.
,
69
(
5
), pp.
594
601
.10.1016/j.compscitech.2008.12.002
38.
Ray
,
M. C.
,
Guzman de Villoria
,
R.
, and
Wardle
,
B. L.
,
2009
, “
Load Transfer Analysis in Short Carbon Fibers With Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix
,”
J. Adv. Mater.
,
41
(
4
), pp.
82
94
.
39.
Xiao
,
J.
,
Dunham
,
S.
,
Liu
,
P.
,
Zhang
,
Y.
,
Kocabas
,
C.
,
Moh
,
L.
,
Huang
,
Y.
,
Hwang
,
K. C.
,
Lu
,
C.
,
Huang
,
W.
, and
Rogers
,
J. A.
,
2009
, “
Alignment Controlled Growth of Single-Walled Carbon Nanotubes on Quartz Substrates
,”
Nano Lett.
,
9
(
12
), pp.
4311
4319
.10.1021/nl9025488
40.
Ray
,
M. C.
,
2010
, “
Concept for a Novel Hybrid Smart Composite Reinforced With Radially Aligned Zigzag Carbon Nanotubes on Piezoelectric Fibers
,”
Smart Mater. Struct.
,
19
, p.
035008
.10.1088/0964-1726/19/3/035008
41.
Ray
,
M. C.
,
2010
, “
A Shear Lag Model of Piezoelectric Composite Reinforced With Carbon-Nanotubes-Coated Piezoelectric Fibers
,”
Int. J. Mech. Mater. Des.
,
6
(
2
), pp.
147
155
.10.1007/s10999-010-9118-2
42.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2011
, “
Micromechanical Analysis of Fuzzy Fiber-Reinforced Composites
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
149
166
.10.1007/s10999-011-9156-4
43.
Chatzigeorgiou
,
G.
,
Efendiev
,
Y.
, and
Lagoudas
,
D. C.
,
2011
, “
Homogenization of Aligned “Fuzzy Fiber” Composites
,”
Int. J. Solids Struct.
,
48
, pp.
2668
2680
.10.1016/j.ijsolstr.2011.05.011
44.
Aboudi
,
J.
,
1995
, “
Micromechanical Analysis of Thermo-Inelastic Multiphase Short-Fiber Composites
,”
Compos. Eng.
,
5
(
7
), pp.
839
850
.10.1016/0961-9526(95)93123-D
45.
Mallik
,
N.
, and
Ray
,
M. C.
,
2003
, “
Effective Coefficients of Piezoelectric Fiber-Reinforced Composites
,”
AIAA J.
,
41
(
4
), pp.
704
710
.10.2514/2.2001
46.
Li
,
C.
, and
Chou
,
T. W.
,
2003
, “
Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites
,”
J. Nanosci. Nanotechnol.
,
3
, pp.
423
430
.10.1166/jnn.2003.233
47.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
A Closed-Form, Hierarchical, Multi-Interphase Model for Composites–Derivation, Verification and Application to Nanocomposites
,”
J. Mech. Phys. Solids
,
59
, pp.
43
63
.10.1016/j.jmps.2010.09.015
48.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
The Effects of the Interphase and Strain Gradients on the Elasticity of Layer by Layer (LBL) Polymer/Clay Nanocomposites
,”
Int. J. Solids Struct.
,
48
, pp.
1044
1053
.10.1016/j.ijsolstr.2010.12.008
49.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
50.
Qui
,
Y. P.
, and
Weng
,
G. J.
,
1990
, “
On the Application of Mori-Tanaka's Theory Involving Transversely Isotropic Spheroidal Inclusions
,”
Int. J. Eng. Sci.
,
28
(
11
), pp.
1121
1137
.10.1016/0020-7225(90)90112-V
51.
Laws
,
N.
,
1973
, “
On the Thermostatics of Composite Materials
,”
J. Mech. Phys. Solids
,
21
(
1
), pp.
9
17
.10.1016/0022-5096(73)90027-6
52.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
1998
, “
Anisotropic Coupled-Field Inclusion and Inhomogeneity Problems
,”
Philos. Mag. A
,
77
(
5
), pp.
1341
1350
.10.1080/01418619808214256
53.
Honjo
,
K.
,
2007
, “
Thermal Stresses and Effective Properties Calculated for Fiber Composites Using Actual Cylindrically-Anisotropic Properties of Interfacial Carbon Coating
,”
Carbon
,
45
(
4
), pp.
865
872
.10.1016/j.carbon.2006.11.007
54.
Villeneuve
,
J. F.
,
Naslain
,
R.
,
Fourmeaus
,
R.
, and
Sevely
,
J.
,
1993
, “
Longitudinal/Radial Thermal Expansion and Poisson Ratio of Some Ceramic Fibers as Measured by Transmission Electron Microscopy
,”
Compos. Sci. Technol.
,
49
(
1
), pp.
89
103
.10.1016/0266-3538(93)90025-C
55.
Peters
,
S, T.
,
1998
,
Handbook of Composites
,
Chapman and Hall
,
London
.
56.
Shen
,
H, S.
,
2001
, “
Hygrothermal Effects on the Postbuckling of Shear Deformable Laminated Plates
,”
Int. J. Mech. Sci.
,
43
(
5
), pp.
1259
1281
.10.1016/S0020-7403(00)00058-8
You do not currently have access to this content.