Fragmentation mechanisms of peptide assemblies under shock deformation are studied using molecular dynamics simulations and are found to depend strongly on the relative magnitude of the shock front radius to the fibril length and the ratio of the impact energy to the fibril cohesive energy. The competition between size scaling of curvature and impact energy leads to a mechanism change at a critical impact velocity, developing a stark contrast in the size scaling of fragmentation at low and high strain rates. We show that the fragmentation mechanisms can be classified on the basis of the length and time scales of deformation and relaxation to provide new insight into experimental observations.

References

References
1.
Keten
,
S.
, and
Buehler
,
M. J.
,
2008
, “
Geometric Confinement Governs the Rupture Strength of H-Bond Assemblies at a Critical Length Scale
,”
Nano Lett.
,
8
(
2
), pp.
743
748
.10.1021/nl0731670
2.
Keten
,
S.
,
Xu
,
Z.
,
Ihle
,
B.
, and
Buehler
,
M. J.
,
2010
, “
Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Beta-Sheet Crystals in Silk
,”
Nature Mater.
,
9
, pp.
359
367
.10.1038/nmat2704
3.
Ruiz
,
L.
, and
Keten
,
S.
,
2011
, “
Atomistic Modeling and Mechanics of Self-Assembled Organic Nanotubes
,”
Int. J. Appl. Mech.
,
3
(
4
), pp.
1
18
.10.1142/S1758825111001184
4.
Paparcone
,
R.
,
Keten
,
S.
, and
Buehler
,
M. J.
,
2010
, “
Atomistic Simulation of Nanomechanical Properties of Alzheimer's Aβ(1-40) Amyloid Fibrils Under Compressive and Tensile Loading
,”
J. Biomech.
,
43
(
6
), pp.
1196
1201
.10.1016/j.jbiomech.2009.11.026
5.
Li
,
D.
, and
Kaner
,
R. B.
, “
Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred
,”
J. Am. Chem. Soc.
,
128
(
3
), pp.
968
975
.10.1021/ja056609n
6.
Carnall
,
J. M. A.
,
Waudby
,
C. A.
,
Belenguer
,
A. M.
,
Stuart
,
M. C. A.
,
Peyralans
,
J. J. P.
, and
Otto
,
S.
,
2010
, “
Mechanosensitive Self-Replication Driven by Self-Organization
,”
Science
,
327
(
5972
), pp.
1502
1506
.10.1126/science.1182767
7.
Hung
,
A. M.
, and
Stupp
,
S. I.
,
2009
, “
Understanding Factors Affecting Alignment of Self-Assembling Nanofibers Patterned by Sonication-Assisted Solution Embossing
,”
Langmuir
,
25
(
12
), pp.
7084
7089
.10.1021/la900149v
8.
Chatani
,
E.
,
Lee
,
Y. H.
,
Yagi
,
H.
,
Yoshimura
,
Y.
,
Naiki
,
H.
, and
Goto
,
Y.
,
2009
, “
Ultrasonication-Dependent Production and Breakdown Lead to Minimum-Sized Amyloid Fibrils
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
27
), pp.
11119
11124
.10.1073/pnas.0901422106
9.
Ohhashi
,
Y.
,
Kihara
,
M.
,
Naiki
,
H.
, and
Goto
,
Y.
,
2005
, “
Ultrasonication-Induced Amyloid Fibril Formation of β2-Microglobulin
,”
J. Biol. Chem.
,
280
(
38
), pp.
32843
32848
.10.1074/jbc.M506501200
10.
Wang
,
X. Q.
,
Kluge
,
J. A.
,
Leisk
,
G. G.
, and
Kaplan
,
D. L.
,
2008
, “
Sonication-Induced Gelation of Silk Fibroin for Cell Encapsulation
,”
Biomaterials
,
29
(
8
), pp.
1054
1064
.10.1016/j.biomaterials.2007.11.003
11.
Knowles
,
T. P. J.
,
Waudby
,
C. A.
,
Devlin
,
G. L.
,
Cohen
,
S. I. A.
,
Aguzzi
,
A.
,
Vendruscolo
,
M.
,
Terentjev
,
E. M.
,
Welland
,
M. E.
, and
Dobson
,
C. M.
,
2009
, “
An Analytical Solution to the Kinetics of Breakable Filament Assembly
,”
Science
,
326
(
5959
), pp.
1533
1537
.10.1126/science.1178250
12.
Polat
,
B. E.
,
Hart
,
D.
,
Langer
,
R.
, and
Blankschtein
,
D.
,
2011
, “
Ultrasound-Mediated Transdermal Drug Delivery: Mechanisms, Scope, and Emerging Trends
,”
J. Controlled Release
,
152
(
3
), pp.
330
348
.10.1016/j.jconrel.2011.01.006
13.
Vedadi
,
M.
,
Choubey
,
A.
,
Nomura
,
K.
,
Kalia
,
R. K.
,
Nakano
,
A.
,
Vashishta
,
P.
, and
van Duin
,
A. C. T.
,
2010
, “
Structure and Dynamics of Shock-Induced Nanobubble Collapse in Water
,”
Phys. Rev. Lett.
,
105
(
1
), p.
014503
.10.1103/PhysRevLett.105.014503
14.
Yang
,
N.-S.
,
Burkholder
,
J.
,
Roberts
,
B.
,
Martinell
,
B.
, and
McCabe
,
D.
,
1990
, “
In Vivo and In Vitro Gene Transfer to Mammalian Somatic Cells by Particle Bombardment
,”
Proc. Natl. Acad. Sci.
,
87
(
24
), pp.
9568
9572
.10.1073/pnas.87.24.9568
15.
Lucas
,
A.
,
Zakri
,
C.
,
Maugey
,
M.
,
Pasquali
,
M.
,
van der Schoot
,
P.
, and
Poulin
,
P.
,
2009
, “
Kinetics of Nanotube and Microfiber Scission Under Sonication
,”
J. Phys. Chem. C
,
113
(
48
), pp.
20599
20605
.10.1021/jp906296y
16.
Kodama
,
T.
,
Hamblin
,
M. R.
, and
Doukas
,
A. G.
,
2000
, “
Cytoplasmic Molecular Delivery With Shock Waves: Importance of Impulse
,”
Biophys. J.
,
79
(
4
), pp.
1821
1832
.10.1016/S0006-3495(00)76432-0
17.
Hennrich
,
F.
,
Krupke
,
R.
,
Arnold
,
K.
,
Stutz
,
J. A. R.
,
Lebedkin
,
S.
,
Koch
,
T.
,
Schimmel
,
T.
, and
Kappes
,
M. M.
,
2007
, “
The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes
,”
J. Phys. Chem. B
,
111
(
8
), pp.
1932
1937
.10.1021/jp065262n
18.
Chew
,
H. B.
,
Moon
,
M. W.
,
Lee
,
K. R.
, and
Kim
,
K. S.
,
2011
, “
Compressive Dynamic Scission of Carbon Nanotubes Under Sonication: Fracture by Atomic Ejection
,”
Proc. R. Soc. London, Ser. A
,
467
(
2129
), pp.
1270
1289
.10.1098/rspa.2010.0495
19.
Hickenboth
,
C. R.
,
Moore
,
J. S.
,
White
,
S. R.
,
Sottos
,
N. R.
,
Baudry
,
J.
, and
Wilson
,
S. R.
,
2007
, “
Biasing Reaction Pathways With Mechanical Force
,”
Nature
,
446
(
7134
), pp.
423
427
.10.1038/nature05681
20.
Caruso
,
M. M.
,
Davis
,
D. A.
,
Shen
,
Q.
,
Odom
,
S. A.
,
Sottos
,
N. R.
,
White
,
S. R.
, and
Moore
,
J. S.
,
2009
, “
Mechanically-Induced Chemical Changes in Polymeric Materials
,”
Chem. Rev.
,
109
(
11
), pp.
5755
5798
.10.1021/cr9001353
21.
Castro
,
C. E.
,
Dong
,
J. J.
,
Boyce
,
M. C.
,
Lindquist
,
S.
, and
Lang
,
M. J.
,
2011
, “
Physical Properties of Polymorphic Yeast Prion Amyloid Fibers
,”
Biophys. J.
,
101
(
2
), pp.
439
448
.10.1016/j.bpj.2011.06.016
22.
Guerin
,
G.
,
Wang
,
H.
,
Manners
,
I.
, and
Winnik
,
M. A.
,
2008
, “
Fragmentation of Fiberlike Structures: Sonication Studies of Cylindrical Block Copolymer Micelles and Behavioral Comparisons to Biological Fibrils
,”
J. Am. Chem. Soc.
,
130
(
44
), pp.
14763
14771
.10.1021/ja805262v
23.
Keten
,
S.
,
Rodriguez Alvarado
,
J.
,
Müftü
,
S.
, and
Buehler
,
M.
,
2009
, “
Nanomechanical Characterization of the Triple β-Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus
,”
Cell. Mol. Bioeng.
,
2
(
1
), pp.
66
74
.10.1007/s12195-009-0047-9
24.
Villermaux
,
E.
, and
Bossa
,
B.
,
2009
, “
Single-Drop Fragmentation Determines Size Distribution of Raindrops
,”
Nature Phys.
,
5
(
9
), pp.
697
702
.10.1038/nphys1340
25.
Gladden
,
J. R.
,
Handzy
,
N. Z.
,
Belmonte
,
A.
, and
Villermaux
,
E.
,
2005
, “
Dynamic Buckling and Fragmentation in Brittle Rods
,”
Phys. Rev. Lett.
,
94
(
3
), p.
035503
.10.1103/PhysRevLett.94.035503
26.
Zhang
,
H.
, and
Ravi-Chandar
,
K.
,
2009
, “
Dynamic Fragmentation of Ductile Materials
,”
J. Phys. D: Appl. Phys.
,
42
(
21
), p.
214010
.10.1088/0022-3727/42/21/214010
27.
Audoly
,
B.
, and
Neukirch
,
S.
,
2005
, “
Fragmentation of Rods by Cascading Cracks: Why Spaghetti Does Not Break in Half
,”
Phys. Rev. Lett.
,
95
(
9
), p.
095505
.10.1103/PhysRevLett.95.095505
28.
Cranford
,
S. W.
,
Tarakanova
,
A.
,
Pugno
,
N. M.
, and
Buehler
,
M. J.
,
2012
, “
Nonlinear Material Behaviour of Spider Silk Yields Robust Webs
,”
Nature
,
482
(
7383
), pp.
72
76
.10.1038/nature10739
29.
Tozzini
,
V.
,
2005
, “
Coarse-Grained Models for Proteins
,”
Curr. Opin. Struct. Biol.
,
15
(
2
), pp.
144
150
.10.1016/j.sbi.2005.02.005
30.
Voth
,
G. A.
,
2009
,
Coarse-Graining of Condensed Phase and Biomolecular Systems
,
CRC
,
Boca Raton
, FL, Chap. xviii.
31.
Reith
,
D.
,
Putz
,
M.
, and
Muller-Plathe
,
F.
,
2003
, “
Deriving Effective Mesoscale Potentials From Atomistic Simulations
,”
J. Comput. Chem.
,
24
(
13
), pp.
1624
1636
.10.1002/jcc.10307
32.
Arkhipov
,
A.
,
Freddolino
,
P. L.
,
Imada
,
K.
,
Namba
,
K.
, and
Schulten
,
K.
,
2006
, “
Coarse-Grained Molecular Dynamics Simulations of a Rotating Bacterial Flagellum
,”
Biophys. J.
,
91
(
12
), pp.
4589
4597
.10.1529/biophysj.106.093443
33.
Atilgan
,
A. R.
,
Durell
,
S. R.
,
Jernigan
,
R. L.
,
Demirel
,
M. C.
,
Keskin
,
O.
, and
Bahar
,
I.
,
2001
, “
Anisotropy of Fluctuation Dynamics of Proteins With an Elastic Network Model
,”
Biophys. J.
,
80
(
1
), pp.
505
515
.10.1016/S0006-3495(01)76033-X
34.
Hourani
,
R.
,
Zhang
,
C.
,
van der Weegen
,
R.
,
Ruiz
,
L.
,
Li
,
C.
,
Keten
,
S.
,
Helms
,
B. A.
, and
Xu
,
T.
,
2011
, “
Processable Cyclic Peptide Nanotubes With Tunable Interiors
,”
J. Am. Chem. Soc.
,
133
, pp.
15296
15299
.10.1021/ja2063082
35.
Go
,
N.
, and
Abe
,
H.
,
1981
, “
Non-Interacting Local-Structure Model of Folding and Unfolding Transition in Globular-Proteins. 1. Formulation
,”
Biopolymers
,
20
(
5
), pp.
991
1011
.10.1002/bip.1981.360200511
36.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
37.
Hartmann
,
M. A.
, and
Fratzl
,
P.
,
2009
, “
Sacrificial Ionic Bonds Need to Be Randomly Distributed to Provide Shear Deformability
,”
Nano Lett.
,
9
(
10
), pp.
3603
3607
.10.1021/nl901816s
38.
Smith
,
J. F.
,
Knowles
,
T. P. J.
,
Dobson
,
C. M.
,
MacPhee
,
C. E.
, and
Welland
,
M. E.
,
2006
, “
Characterization of the Nanoscale Properties of Individual Amyloid Fibrils
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
43
), pp.
15806
15811
.10.1073/pnas.0604035103
39.
Sachse
,
C.
,
Grigorieff
,
N.
, and
Fandrich
,
M.
,
2010
, “
Nanoscale Flexibility Parameters of Alzheimer Amyloid Fibrils Determined by Electron Cryo-Microscopy
,”
Angew. Chem., Int. Ed.
,
49
(
7
), pp.
1321
1323
.10.1002/anie.200904781
40.
Ruiz
,
L.
, and
Keten
,
S.
, “
Multi-Scale Modeling of Elasticity and Fracture in Organic Nanotubes
,”
J. Eng. Mech.
, (in press).10.1061/(ASCE)EM.1943-7889.0000471
41.
Tsemekhman
,
K.
,
Goldschmidt
,
L.
,
Eisenberg
,
D.
, and
Baker
,
D.
,
2007
, “
Cooperative Hydrogen Bonding in Amyloid Formation
,”
Protein Sci.
,
16
(
4
), pp.
761
764
.10.1110/ps.062609607
42.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics
,
14
(
1
), pp.
33
38
.10.1016/0263-7855(96)00018-5
43.
Faeth
,
G. M.
,
Hsiang
,
L. P.
, and
Wu
,
P. K.
,
1995
, “
Structure and Breakup Properties of Sprays
,”
Int. J. Multiphase Flow
,
21
, pp.
99
127
.10.1016/0301-9322(95)00059-7
44.
Joseph
,
D. D.
,
Belanger
,
J.
, and
Beavers
,
G. S.
,
1999
, “
Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1263
1303
.10.1016/S0301-9322(99)00043-9
45.
Pilch
,
M.
, and
Erdman
,
C. A.
,
1987
, “
Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid-Drop
,”
Int. J. Multiphase Flow
,
13
(
6
), pp.
741
757
.10.1016/0301-9322(87)90063-2
46.
Carpinteri
,
A.
, and
Pugno
,
N.
,
2002
, “
A Fractal Comminution Approach to Evaluate the Drilling Energy Dissipation
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
26
(
5
), pp.
499
513
.10.1002/nag.209
47.
LeDuc
,
P.
,
Haber
,
C.
,
Bao
,
G.
, and
Wirtz
,
D.
,
1999
, “
Dynamics of Individual Flexible Polymers in a Shear Flow
,”
Nature
,
399
(
6736
), pp.
564
566
.10.1038/21148
You do not currently have access to this content.