Parametric instability in a system is caused by periodically varying coefficients in its governing differential equations. While parametric excitation of lumped-parameter systems has been extensively studied, that of distributed-parameter systems has been traditionally analyzed by applying Floquet theory to their spatially discretized equations. In this work, parametric instability regions of a second-order nondispersive distributed structural system, which consists of a translating string with a constant tension and a sinusoidally varying velocity, and two boundaries that axially move with a sinusoidal velocity relative to the string, are obtained using the wave solution and the fixed point theory without spatially discretizing the governing partial differential equation. There are five nontrivial cases that involve different combinations of string and boundary motions: (I) a translating string with a sinusoidally varying velocity and two stationary boundaries; (II) a translating string with a sinusoidally varying velocity, a sinusoidally moving boundary, and a stationary boundary; (III) a translating string with a sinusoidally varying velocity and two sinusoidally moving boundaries; (IV) a stationary string with a sinusoidally moving boundary and a stationary boundary; and (V) a stationary string with two sinusoidally moving boundaries. Unlike parametric instability regions of lumped-parameter systems that are classified as principal, secondary, and combination instability regions, the parametric instability regions of the class of distributed structural systems considered here are classified as period-1 and period-i (i>1) instability regions. Period-1 parametric instability regions are analytically obtained; an equivalent total velocity vector is introduced to express them for all the cases considered. While period-i (i>1) parametric instability regions can be numerically calculated using bifurcation diagrams, it is shown that only period-1 parametric instability regions exist in case IV, and no period-i (i>1) parametric instability regions can be numerically found in case V. Unlike parametric instability in a lumped-parameter system that is characterized by an unbounded displacement, the parametric instability phenomenon discovered here is characterized by a bounded displacement and an unbounded vibratory energy due to formation of infinitely compressed shock-like waves. There are seven independent parameters in the governing equation and boundary conditions, and the parametric instability regions in the seven-dimensional parameter space can be projected to a two-dimensional parameter plane if five parameters are specified. Period-1 parametric instability occurs in certain excitation frequency bands centered at the averaged natural frequencies of the systems in all the cases. If the parameters are chosen to be in the period-i (i1) parametric instability region corresponding to an integer k, an initial smooth wave will be infinitely compressed to k shock-like waves as time approaches infinity. The stable and unstable responses of the linear model in case I are compared with those of a corresponding nonlinear model that considers the coupled transverse and longitudinal vibrations of the translating string and an intermediate linear model that includes the effect of the tension change due to axial acceleration of the string on its transverse vibration. The parametric instability in the original linear model can exist in the nonlinear and intermediate linear models.

References

1.
Xie
,
Wei-Chau
,
2006
,
Dynamic Stability of Structures
,
Cambridge University Press
,
New York
, pp.
1
3
.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
New York
, pp.
258
259
.
3.
Arnold
,
V. I.
,
1992
,
Ordinary Differential Equations
,
Springer-Verlag
,
New York
, p.
261
.
4.
Faraday
,
M.
,
1831
, “
On a Peculiar Class of Acoustical Figure; and on Certain Forms Assumed by Groups of Particles Upon Vibrating Elastic Surfaces
,”
Philos. Trans. R. Soc. London
,
121
, pp.
299
340
.10.1098/rstl.1831.0018
5.
Strutt
,
J. W.
,
1883
, “
On Maintained Vibrations
,”
Philos. Mag.
,
15
, pp.
229
235
.10.1080/14786448308627342
6.
Hsu
,
C. S.
,
1963
, “
On the Parametric Excitation of a Dynamic System Having Multiple Degrees of Freedom
,”
ASME J. Appl. Mech.
,
30
, pp.
367
372
.10.1115/1.3636563
7.
Hsu
,
C. S.
,
1965
, “
Further Results on Parametric Excitation of a Dynamic System
,”
ASME J. Appl. Mech.
,
32
, pp.
373
377
.10.1115/1.3625809
8.
Rand
,
R. H.
,
1969
, “
On the Stability of Hill’s Equation With Four Independent Parameters
,”
ASME J. Appl. Mech.
,
36
, pp.
885
886
.10.1115/1.3564793
9.
Sinha
,
S. C.
,
Chou
,
C. C.
, and
Denman
,
H. H.
,
1979
, “
Stability Analysis of Systems With Periodic Coefficients: An Approximate Approach
,”
J. Sound Vib.
,
64
, pp.
515
527
.10.1016/0022-460X(79)90801-0
10.
Ecker
,
H.
,
Paradeiser
,
W.
, and
Schmidt
,
E.
,
2011
, “
Experimental Investigation of a Parametrically Excited Nonlinear System
,” Proceedings of the European Nonlinear Dynamics Conference (ENDC 2011), Rome, July 24–29.
11.
Turner
,
K. L.
,
Miller
,
S. A.
,
Hartwell
,
P. G.
,
MacDonald
,
N. C.
,
Strogatz
,
S. H.
, and
Adams
,
S. G.
,
1998
, “
Five Parametric Resonances in a Microelectromechanical System
,”
Nature
,
396
, pp.
149
152
.10.1038/24122
12.
Pakdemirli
,
M.
,
Ulsoy
,
A. G.
, and
Ceranoglu
,
A.
,
1994
, “
Transverse Vibration of an Axially Accelerating String
,”
J. Sound Vib.
,
169
, pp.
179
196
.10.1006/jsvi.1994.1012
13.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Stability of an Axially Accelerating String
,”
J. Sound Vib.
,
203
, pp.
815
832
.10.1006/jsvi.1996.0935
14.
Kuchment
,
P. A.
,
1993
,
Floquet Theory for Partial Differential Equations
,
Birkhauser Verlag
,
Basel, Switzerland
, p.
260
.
15.
Cooper
,
J.
,
1993
, “
Asymptotic Behavior for the Vibrating String With a Moving Boundary
,”
J. Math. Anal. Appl.
,
174
, pp.
67
87
.10.1006/jmaa.1993.1102
16.
Cooper
,
J.
,
1993
, “
Long-Time Behavior and Energy Growth for Electromagnetic Waves Reflected by a Moving Boundary
,”
IEEE Trans. Antennas Propag.
,
41
(
10
), pp.
1365
1370
.10.1109/8.247776
17.
Zhu
,
W. D.
, and
Zheng
,
N. A.
,
2008
, “
Exact Response of a Translating String With Arbitrary Varying Length Under General Excitation
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031003
.10.1115/1.2839903
18.
Zhu
,
W. D.
, and
Guo
,
B. Z.
,
1998
, “
Free and Forced Vibration of an Axially Moving String With an Arbitrary Velocity Profile
,”
ASME J. Appl. Mech.
,
65
, pp.
901
907
.10.1115/1.2791932
19.
Zhu
,
W. D.
,
Song
,
X. K.
, and
Zheng
,
N. A.
,
2011
, “
Dynamic Stability of a Translating String With a Sinusoidally Varying Velocity
,”
ASME J. Appl. Mech.
,
78
(
6
), p.
061021
.10.1115/1.4003908
20.
Lin
,
J.
, and
Parker
,
R. G.
,
2002
, “
Mesh Stiffness Variation Instabilities in Two-Stage Gear Systems
,”
ASME J. Vibr. Acoust.
,
124
, pp.
68
76
.10.1115/1.1424889
21.
Zhu
,
W. D.
, and
Ni
,
J.
,
2000
, “
Energetics and Stability of Translating Media With an Arbitrary Varying Length
,”
ASME J. Vibr. Acoust.
,
122
, pp.
295
304
.10.1115/1.1303003
22.
Alligood
,
K. T.
,
Sauer
,
T. D.
, and
Yorke
,
J. A.
,
1996
,
Chaos: An Introduction to Dynamical Systems
,
Springer-Verlag
,
New York
, p.
135
.
23.
Robinson
,
C.
,
1999
,
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos
,
CRC Press
,
Boca Raton, FL
, p.
15
.
24.
Grove
,
E. A.
, and
Ladas
,
G. E.
,
2004
,
Periodicities in Nonlinear Difference Equations
,
CRC Press, Boca Raton
,
FL
, pp.
52
53
.
25.
Thurman
,
A. L.
, and
Mote
,
C. D.
, Jr
,
1969
, “
Free, Periodic, Nonlinear Oscillation of an Axially Moving Strip
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
83
91
.10.1115/1.3564591
You do not currently have access to this content.