The paper presents a comparison between two existing zigzag functions that are used to improve equivalent single layer (ESL) theories for the analysis of multilayered composite and sandwich beams. ESL theories are easy to implement and computationally affordable but, in order to correctly describe the mechanical behavior of laminated structures (especially those exhibiting high transverse anisotropy or high thickness-to-side length ratios), the displacement field needs to be enriched by a through-the-thickness piecewise linear contribution denoted as “zigzag.” The zigzag term of the displacement field is used to model the local distortion of the cross section in each lamina of multilayered structures and is related to the continuity of transverse stresses. The paper considers two zigzag functions that have been proposed in the open literature (namely Murakami's zigzag function and the refined zigzag function) and compares their performances when they are used to improve the classical Timoshenko beam theory; both displacement-based and mixed formulations are considered. To the best of the author's knowledge, such a comparative study has never been published. The problem of a simply supported beam subjected to a transverse distributed load is considered as a test case. Several stacking sequences, ranging from monolithic to sandwich-like and from symmetric to arbitrary, are considered. The special case of laminates with external weak layers is also investigated and the effects of these lay-ups on the derivation of the refined zigzag function are analyzed for the first time. The capability of the tested zigzag functions to help evaluate the overall deflection and model the through-the-thickness distribution of the axial displacement and stress is investigated. It has been recognized that the refined zigzag function is more accurate, especially for unsymmetric and arbitrary lay-ups and can be adopted to efficiently introduce zigzag kinematics into any ESL theory.

References

References
1.
Carrera
,
E.
,
2001
, “
Developments, Ideas and Evaluations Based Upon Reissner's Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
301
329
.10.1115/1.1385512
2.
Savoia
,
M.
, and
Reddy
,
J. N.
,
1995
, “
Three-Dimensional Thermal Analysis of Laminated Composite Plates
,”
Int. J. Sol. Str.
,
32
(
5
), pp.
593
608
.10.1016/0020-7683(94)00146-N
3.
Carrera
,
E.
,
1997
, “Cz 0
-Requirements-Models for the Two Dimensional Analysis of Multilayered Structures
,”
Compos. Str.
,
37
, pp.
373
384
.10.1016/S0263-8223(98)80005-6
4.
Demasi
,
L.
,
2012
, “
Partially Zig-Zag Advanced Higher Order Shear Deformation Theories Based on the Generalized Unified Formulation
,”
Compos. Str.
,
94
(
2
), pp.
363
375
.10.1016/j.compstruct.2011.07.022
5.
Carrera
,
E.
,
2003
, “
Historical Review of Zig-Zag Theories for Multilayered Plates and Shells
,”
ASME Appl. Mech. Rev.
,
56
, pp.
287
208
.10.1115/1.1557614
6.
Lekhnitskii
,
S. G.
,
1935
, “
Strength Calculation of Composite Beams
,”
Vestnik Inzhen i Teknikov
,
9
, pp. 137–148.
7.
Ambartsumian
,
S. A.
,
1957
, “
Analysis of Two-Layer Orthotropic Shells
,”
Investiia Akad Nauk SSSR
, Ot Tekh Nauk,
7
, pp. 93–106.
8.
Liu
,
D.
, and
Li.
,
X.
,
1996
, “
An Overall View of Laminate Theories Based on Displacement Hypothesis
,”
J. Compos. Mat.
,
30
(
14
), pp.
1539
1561
.10.1177/002199839603001402
9.
Reissner
,
E.
,
1984
, “
On a Certain Mixed Variational Theorem and a Proposed Application
,”
Int. J. Num. Meth. Eng.
,
20
(
7
), pp.
1366
1368
.10.1002/nme.1620200714
10.
Reddy
,
J. N.
,
1997
,
Mechanics of Laminated Composite Plates
,
CRC Press
,
New York.
11.
Reissner
,
E.
, and
Stavsky
,
Y.
,
1961
, “
Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
402
408
.10.1115/1.3641719
12.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
68
77
.
13.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear Deformation on Flexural Motions of Isotropic Elastic Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
31
38
.
14.
Whitney
,
J. M.
, and
Pagano
,
N. J.
,
1970
, “
Shear Deformation in Heterogeneous Anisotropic Plates
,”
ASME J. Appl. Mech.
,
37
(
4
), pp.
1031
1036
.10.1115/1.3408654
15.
Reissner
,
E.
,
1985
, “
Reflections on the Theory of Elastic Plates
,”
ASME Appl. Mech. Rev.
,
38
(
11
), pp.
1453
1464
.10.1115/1.3143699
16.
Librescu
,
L.
,
Khdeir
,
A.
, and
Reddy
,
J. N.
,
1987
, “
A Comprehensive Analysis of the State of Stress of Elastic Anisotropic Flat Plates Using Refined Theories
,”
Act. Mech.
,
70
, pp.
57
81
.10.1007/BF01174647
17.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
745
752
.10.1115/1.3167719
18.
Tessler
,
A.
,
1993
, “
An Improved Plate Theory of {1,2}-Order for Thick Composite Laminates
,”
Int. J. Sol. Str.
,
30
(
7
), pp.
981
1000
.10.1016/0020-7683(93)90022-Y
19.
Cook
,
G. M.
, and
Tessler
,
A.
,
1998
, “
A {3,2}-Order Bending Theory for Laminated Composite and Sandwich Beams
,”
Compos. B. Eng.
,
29
(
5
), pp.
565
576
.10.1016/S1359-8368(98)00011-0
20.
Barut
,
A.
,
Madenci
,
E.
,
Anderson
,
T.
, and
Tessler
,
A.
,
2002
, “
Equivalent Single-Layer Theory for a Complete Stress Field in Sandwich Panels Under Arbitrarily Distributed Loading
,”
Compos. Str.
,
58
(
4
), pp.
483
495
.10.1016/S0263-8223(02)00137-X
21.
Touratier
,
M.
,
1991
, “
An Efficient Standard Plate Theory
,”
Int. J. Eng. Sci.
,
29
, pp.
901
916
.10.1016/0020-7225(91)90165-Y
22.
Reddy
,
J. N.
,
1987
, “
A Generalization of Two-Dimensional Theories of Laminated Composite Plates
,”
Comm. Appl. Num. Meth.
,
3
(
3
), pp.
173
180
.10.1002/cnm.1630030303
23.
Lu
,
X.
, and
Liu
,
D.
,
1992
, “
An Interlaminar Shear Stress Continuity Theory for Both Thin and Thick Composite Laminates
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
502
509
.10.1115/1.2893752
24.
Di Sciuva
,
M.
,
1984
, “
A Refinement of the Transverse Shear Deformation Theory for Multilayered Orthotropic Plates
,”
Proc. AIDAA National Congress, 1983. Also in: L'aerotecnica missili e spazio
,
62
, pp.
84
92
.
25.
Di Sciuva
,
M.
,
1984
, “
A Refined Transverse Shear Deformation Theory for Multilayered Anisotropic Plates
,”
Atti Accademia delle Scienze di Torino
,
118
, pp.
279
295
.
26.
Di Sciuva
,
M.
,
1985
, “
Development of an Anisotropic, Multilayered, Shear-Deformable Rectangular Plate Element
,”
Comp. Str.
,
21
(
4
), pp.
789
796
.10.1016/0045-7949(85)90155-5
27.
Di Sciuva
,
M.
,
1985
, “
Evaluation of Some Multilayered, Shear-Deformable Plate Elements
,”
Proc. 26th Structures, Structural Dynamics and Materials Conference, Orlando, FL, April 15–17, AIAA/ASME/ASCE/AHS-Paper 85-0717
, pp.
394
400
.
28.
Di Sciuva
,
M.
,
1986
, “
Bending, Vibration and Buckling of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of a New Displacement Model
,”
J. Sound Vib.
,
105
(
3
), pp.
425
442
.10.1016/0022-460X(86)90169-0
29.
Di Sciuva
,
M.
,
1987
, “
An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
589
596
.10.1115/1.3173074
30.
Di Sciuva
,
M.
,
1990
, “
Further Refinement in the Transverse Shear Deformation Theory for Multilayered Composite Plates
,”
Atti Accademia delle Scienze di Torino
,
124
(
5–6
), pp.
248
268
.
31.
Di Sciuva
,
M.
,
1992
, “
Multilayered Anisotropic Plate Models With Continuous Interlaminar Stresses
,”
Compos. Str.
,
22
(
3
), pp.
149
167
.10.1016/0263-8223(92)90003-U
32.
Di Sciuva
,
M.
,
1995
, “
A Third-Order Triangular Multilayered Plate Finite Element With Continuous Interlaminar Stresses
,”
Int. J. Num. Meth. Eng.
,
38
, pp.
1
26
.10.1002/nme.1620380102
33.
Di Sciuva
,
M.
,
Gherlone
,
M.
, and
Librescu
,
L.
,
2002
, “
Implications of Damaged Interfaces and of Other Non-Classical Effects on the Load Carrying Capacity of Multilayered Composite Shallow Shells
,”
Int. J. Nonlin. Mech.
,
37
(
4–5
), pp.
851
867
.10.1016/S0020-7462(01)00102-0
34.
Cho
,
M.
, and
Parmenter
,
R. R.
,
1993
, “
Efficient Higher Order Composite Plate Theory for General Lamination Configurations
,”
AIAA J.
,
31
(
7
), pp.
1299
1306
.10.2514/3.11767
35.
Cho
,
M.
, and
Kim
,
J. H.
,
1996
, “
Postprocess Method Using Displacement Field of Higher Order Laminated Composite Plate Theory
,”
AIAA J.
,
34
(
2
), pp.
362
368
.10.2514/3.13072
36.
Cho
,
M.
, and
Choi
,
Y. J.
,
2001
, “
A New Postprocessing Method for Laminated Composites of General Laminations Configurations
,”
Compos. Str.
,
54
, pp.
397
406
.10.1016/S0263-8223(01)00076-9
37.
Cho
,
M.
, and
Kim
,
J. S.
,
1996
, “
Four-Noded Finite Element Post-Process Method Using a Displacement Field of Higher-Order Laminated Composite Plate Theory
,”
Comp. Str.
,
61
(
2
), pp.
283
290
.10.1016/0045-7949(96)00043-0
38.
Cho
,
M.
, and
Kim
,
J. S.
,
1997
, “
Improved Mindlin Plate Stress Analysis for Laminated Composites in Finite Element Method
,”
AIAA J.
,
35
(
3
), pp.
587
590
.10.2514/2.145
39.
Cho
,
M.
, and
Kim
,
J. S.
,
2005
, “
Enhanced First-Order Shear Deformation Theory for Laminated and Sandwich Plates
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
809
817
.10.1115/1.2041657
40.
Oh
,
J.
,
Cho
,
M.
, and
Kim
,
J. S.
,
2007
, “
Enhanced Lower-Order Shear Deformation Theory for Fully Coupled Electro-Thermomechanical Smart Laminated Plates
,”
Sma. Mat. Str.
,
16
, pp.
2229
2241
.10.1088/0964-1726/16/6/026
41.
Kim
,
J. S. J.
,
Oh
,
J.
, and
Cho
,
M.
,
2011
, “
Efficient Analysis of Laminated Composite and Sandwich Plates With Interfacial Imperfections
,”
Compos. B. Eng.
,
42
, pp.
1066
1075
.10.1016/j.compositesb.2011.03.020
42.
Averill
,
R. C.
,
1994
, “
Static and Dynamic Response of Moderately Thick Laminated Beams With Damage
,”
Compos. Eng.
,
4
(
4
), pp.
381
395
.10.1016/S0961-9526(09)80013-0
43.
Averill
,
R. C.
, and
Yip
,
Y. C.
,
1996
, “
Development of Simple, Robust Finite Elements Based on Refined Theories for Thick Laminated Beams
,”
Comp. Str.
,
59
(
3
), pp.
529
546
.10.1016/0045-7949(95)00269-3
44.
Icardi
,
U.
,
2001
, “
Large Bending Actuator Made With SMA Contractile Wires: Theory, Numerical Simulation and Experiments
,”
Compos. B. Eng.
,
32
, pp.
259
267
.10.1016/S1359-8368(00)00062-7
45.
Icardi
,
U.
,
2001
, “
Higher-Order Zig-Zag Model for Analysis of Thick Composite Beams With Inclusion of Transverse Normal Stress and Sublaminates Approximation
,”
Compos. B. Eng.
,
32
, pp.
343
354
.10.1016/S1359-8368(01)00016-6
46.
Di Sciuva
,
M.
,
Icardi
,
U.
,
Miraldi
,
E.
, and
Ruvinetti
,
G.
,
2001
, “
Holographic Interferometry Assessment of Stress Distribution in Sandwich Beams in Bending
,”
Compos. B. Eng.
,
32
, pp.
175
184
.10.1016/S1359-8368(00)00054-8
47.
Icardi
,
U.
,
2005
, “
C0 Plate Element for Global/Local Analysis of Multilayered Composites, Based on a 3D Zig-Zag Model and Strain Energy Updating
,”
Int. J. Mech. Sci.
,
47
, pp.
1561
1594
.10.1016/j.ijmecsci.2005.06.002
48.
Icardi
,
U.
, and
Ferrero
,
L.
,
2011
, “
Multilayered Shell Model With Variable Representation of Displacements Across the Thickness
,”
Compos. B. Eng.
,
42
, pp.
18
26
.10.1016/j.compositesb.2010.09.022
49.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Jain
,
N. K.
,
2004
, “
Assessment of Zigzag Theory for Static Loading, Buckling, Free and Forced Response of Composite and Sandwich Beams
,”
Compos. Str.
,
64
, pp.
317
327
.10.1016/j.compstruct.2003.08.013
50.
Kapuria
,
S.
,
Ahmed
,
A.
, and
Dumir
,
P. C.
,
2004
, “
Static and Dynamic Thermo-Electro-Mechanical Analysis of Angle-Ply Hybrid Piezoelectric Beams Using an Efficient Coupled Zigzag Theory
,”
Compos. Sci. Tech.
,
64
, pp.
2463
2475
.10.1016/j.compscitech.2004.05.012
51.
Kapuria
,
S.
,
Bhattacharyya
,
M.
, and
Kumar
,
A. N.
,
2006
, “
Assessment of Coupled 1D Models for Hybrid Piezoelectric Layered Functionally Graded Beams
,”
Compos. Str.
,
72
, pp.
455
468
.10.1016/j.compstruct.2005.01.015
52.
Kapuria
,
S.
, and
Kulkarni
,
S.D.
,
2008
, “
An Efficient Quadrilateral Element Based on Improved Zigzag Theory for Dynamic Analysis of Hybrid Plates With Electroded Piezoelectric Actuators and Sensors
,”
J. Sound Vib.
,
315
, pp.
118
145
.10.1016/j.jsv.2008.01.053
53.
Vidal
,
P.
, and
Polit
,
O.
,
2006
, “
A Thermo Mechanical Finite Element for the Analysis of Rectangular Laminated Beams
,”
Fin. Elem. Anal. Des.
,
42
, pp.
868
883
.10.1016/j.finel.2006.01.005
54.
Vidal
,
P.
, and
Polit
,
O.
,
2008
, “
A Family of Sinus Finite Elements for the Analysis of Rectangular Laminated Beams
,”
Compos. Str.
,
84
, pp.
56
72
.10.1016/j.compstruct.2007.06.009
55.
Vidal
,
P.
, and
Polit
,
O.
,
2010
, “
Vibration of Multilayered Beams Using Sinus Finite Elements With Transverse Normal Stress
,”
Compos. Str.
,
92
, pp.
1524
1534
.10.1016/j.compstruct.2009.10.009
56.
Arya
,
H.
,
Shimpi
,
R. P.
, and
Naik
,
N. K.
,
2002
, “
A Zigzag Model for Laminated Composite Beams
,”
Compos. Str.
,
56
, pp.
21
24
.10.1016/S0263-8223(01)00178-7
57.
Arya
,
H.
,
2003
, “
A New Zig-Zag Model for Laminated Composite Beams: Free Vibration Analysis
,” (Letter to the Editor),
J. Sound Vib.
,
264
, pp.
485
490
.10.1016/S0022-460X(02)01489-X
58.
Chakrabarti
,
A.
, and
Sheikh
,
A. H.
,
2005
, “
Buckling of Laminated Sandwich Plates Subjected to Partial Edge Compression
,”
Int. J. Mech. Sci.
,
47
, pp.
418
436
.10.1016/j.ijmecsci.2005.01.005
59.
Chakrabarti
,
A.
, and
Sheikh
,
A. H.
,
2006
, “
Dynamic Instability of Laminated Sandwich Plates Using an Efficient Finite Element Model
,”
Th. Wal. Str.
,
44
, pp.
57
68
.10.1016/j.tws.2005.09.003
60.
Topdar
,
P.
,
Sheikh
,
A. H.
, and
Dhang
,
N.
,
2007
, “
Vibration Characteristics of Composite/Sandwich Laminates With Piezoelectric Layers Using a Refined Hybrid Plate Model
,”
Int. J. Mech. Sci.
,
49
, pp.
1193
1203
.10.1016/j.ijmecsci.2007.04.001
61.
Pandit
,
M. K.
,
Singh
,
B. N.
, and
Sheikh
,
A. H.
,
2008
, “
Buckling of Laminated Sandwich Plates With Soft Core Based on an Improved Higher Order Zigzag Theory
,”
Th. Wal. Str.
,
46
, pp.
1183
1191
.10.1016/j.tws.2008.03.002
62.
Chakrabarti
,
A.
,
Chalak
,
H. D.
,
Iqbal
,
M. A.
, and
Sheikh
,
A. H.
,
2011
, “
A New FE Model Based on Higher Order Zigzag Theory for the Analysis of Laminated Sandwich Beam With Soft Core
,”
Compos. Str.
,
93
, pp.
271
279
.10.1016/j.compstruct.2010.08.031
63.
Zhen
,
W.
, and
Wanji
,
C.
,
2010
, “
A C0-Type Higher-Order Theory for Bending Analysis of Laminated Composite and Sandwich Plates
,”
Compos. Str.
,
92
, pp.
653
661
.10.1016/j.compstruct.2009.09.032
64.
Lo
,
S. H.
,
Zhen
,
W.
,
Sze
,
K. Y.
, and
Wanji
,
C.
,
2011
, “
An Improved In-Plane Displacement Model for the Stability Analysis of Laminated Composites With General Lamination Configurations
,”
Compos. Str.
,
93
, pp.
1584
1594
.10.1016/j.compstruct.2011.01.006
65.
Xiaohui
,
R.
,
Wanji
,
C.
, and
Zhen
,
W.
,
2012
, “
A C0-Type Zig–Zag Theory and Finite Element for Laminated Composite and Sandwich Plates With General Configurations
,”
Arch. Appl. Mech.
,
82
, pp.
391
406
.10.1007/s00419-011-0563-7
66.
Akhras
,
G.
, and
Li
,
W.
,
2007
, “
Spline Finite Strip Analysis of Composite Plates Based on Higher-Order Zigzag Composite Plate Theory
,”
Compos. Str.
,
78
, pp.
112
118
.10.1016/j.compstruct.2005.08.016
67.
Akhras
,
G.
, and
Li
,
W.
,
2011
, “
Stability and Free Vibration Analysis of Thick Piezoelectric Composite Plates Using Spline Finite Strip Method
,”
Int. J. Mech. Sci.
,
53
, pp.
575
584
.10.1016/j.ijmecsci.2011.05.004
68.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2007
, “
A Refined Linear Zigzag Theory for Composite Beams: Reformulation of Zigzag Function and Shear Stress Constraints
,”
Proc. 6th International Symposium on Advanced Composites and Applications for the New Millennium
, Corfù, Greece, May 16–18.
69.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2007
, “
Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics
,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA/TP-2007-215086.
70.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2008
, “
A Shear-Deformation Theory for Composite and Sandwich Plates Using Improved Zigzag Kinematics
,”
Proc. 9th International Conference on Computational Structures Technology
, Athens, Greece, September 2–5.
71.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2009
, “
A Refined Zigzag Beam Theory for Composite and Sandwich Beams
,”
J. Compos. Mat.
,
43
(
9
), pp.
1051
1081
.10.1177/0021998308097730
72.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2009
, “
Refined Zigzag Theory for Laminated Composite and Sandwich Plates
,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA/TP-2009-215561.
73.
Di Sciuva
,
M.
,
Gherlone
,
M.
, and
Tessler
,
A.
,
2010
, “
A Robust and Consistent First-Order Zigzag Theory for Multilayered Beams
,”
Advances in Mathematical Modelling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume
,
R.
Gilat
and
L.
Banks-Sills
, eds.,
Springer
,
New York
, pp.
255
268
.
74.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2010
, “
A Consistent Refinement of First-Order Shear-Deformation Theory for Laminated Composite and Sandwich Plates Using Improved Zigzag Kinematics
,”
J. Mech. Mat. Str.
,
5
(
2
), pp.
341
367
.10.2140/jomms.2010.5.341
75.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2010
, “
Refined Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates: A Homogeneous-Limit Methodology for Zigzag Function Selection
,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA/TP-2010-216214.
76.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2011
, “
A Homogeneous Limit Methodology and Refinements of Computationally Efficient Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates
,”
Num. Meth. Part. Diff. Eqs.
,
27
(
1
), pp.
208
229
.10.1002/num.20646
77.
Gherlone
,
M.
,
Tessler
,
A.
, and
Di Sciuva
,
M.
,
2011
, “
C0 Beam Elements Based on the Refined Zigzag Theory for Multilayered Composite and Sandwich Laminates
,”
Compos. Str.
,
93
(
11
), pp.
2882
2894
.10.1016/j.compstruct.2011.05.015
78.
Versino
,
D.
,
Mattone
,
M.
,
Gherlone
,
M.
,
Tessler
,
A.
, and
Di Sciuva
,
M.
,
2013
, “
An Efficient, C0 Triangular Elements Based on the Refined Zigzag Theory for Multilayered Composite and Sandwich Plates
,”
Compos. B. Eng.
,
44B
(
1
), pp.
218
230
.10.1016/j.compositesb.2012.05.026
79.
Murakami
,
H.
,
1986
, “
Laminated Composite Plate Theory With Improved In-Plane Responses
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
661
666
.10.1115/1.3171828
80.
Toledano
,
A.
, and
Murakami
,
H.
,
1987
, “
A High-Order Laminated Plate Theory With Improved In-Plane Responses
,”
Int. J. Sol. Str.
,
23
(
1
), pp.
111
131
.10.1016/0020-7683(87)90034-5
81.
Toledano
,
A.
, and
Murakami
,
H.
,
1987
, “
A Composite Plate Theory for Arbitrary Laminate Configurations
,”
ASME J. Appl. Mech.
,
54
(
1
), pp.
181
189
.10.1115/1.3172955
82.
Carrera
,
E.
,
2004
, “
On the Use of the Murakami's Zig-Zag Function in the Modeling of Layered Plates and Shells
,”
Comp. Str.
,
82
, pp.
541
554
.10.1016/j.compstruc.2004.02.006
83.
Murakami
,
H.
,
Maewal
,
A.
, and
Hegemier
,
G. A.
,
1981
, “
A Mixture Theory With a Director for Linear Elastodynamics of Periodically Laminated Media
,”
Int. J. Sol. Str.
,
17
, pp.
155
173
.10.1016/0020-7683(81)90072-X
84.
Pagano
,
N. J.
,
1969
, “
Exact Solutions for Composite Laminates in Cylindrical Bending
,”
J. Compos. Mat.
,
3
, pp.
398
411
.10.1177/002199836900300304
85.
Carrera
,
E.
,
2000
, “
A Priori vs. A Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates
,”
Compos. Str.
,
48
, pp.
245
260
.10.1016/S0263-8223(99)00112-9
86.
Carrera
,
E.
,
2000
, “
An Assessment of Mixed and Classical Theories on Global and Local Response of Multilayered Orthotropic Plates
,”
Compos. Str.
,
50
, pp.
183
198
.10.1016/S0263-8223(00)00099-4
87.
Demasi
,
L.
,
2005
, “
Refined Multilayered Plate Elements Based on Murakami Zig-Zag Function
,”
Compos. Str.
,
70
, pp.
308
316
.10.1016/j.compstruct.2004.08.036
88.
Brischetto
,
S.
,
Carrera
,
E.
, and
Demasi
,
L.
,
2009
, “
Improved Bending Analysis of Sandwich Plate Using a Zig-Zag Function
,”
Compos. Str.
,
89
, pp.
408
415
.10.1016/j.compstruct.2008.09.001
89.
Brischetto
,
S.
,
Carrera
,
E.
, and
Demasi
,
L.
,
2009
, “
Improved Response of Unsymmetrically Laminated Sandwich Plates by Using Zig-Zag Functions
,”
J. Sand. Str. Mat.
,
11
, pp.
257
267
.10.1177/1099636208099379
90.
Carrera
,
E.
, and
Brischetto
,
S.
,
2009
, “
A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates
,”
Appl. Mech. Rev.
,
62
, pp.
1
17
.10.1115/1.3013824
91.
Ferreira
,
A. J. M.
,
Roque
,
C. M. C.
,
Carrera
,
E.
,
Cinefra
,
M.
, and
Polit
,
O.
,
2011
, “
Radial Basis Functions Collocation and a Unified Formulation for Bending, Vibration and Buckling Analysis of Laminated Plates, According to a Variation of Murakami's Zig-Zag Theory
,”
Eur. J. Mech. A Sol.
,
30
, pp.
559
570
.10.1016/j.euromechsol.2011.01.007
92.
Rodrigues
,
J. D.
,
Roque
,
C. M. C.
,
Ferreira
,
A. J. M.
,
Carrera
,
E.
, and
Cinefra
,
M.
,
2011
, “
Radial Basis Functions–Finite Differences Collocation and a Unified Formulation for Bending, Vibration and Buckling Analysis of Laminated Plates, According to Murakami's Zig-Zag Theory
,”
Compos. Str.
,
93
, pp.
1613
1620
.10.1016/j.compstruct.2011.01.009
93.
Ali
,
J. S. M.
,
Bhaskar
,
K.
, and
Varadan
,
T. K.
,
1999
, “
A New Theory for Accurate Thermal/Mechanical Flexural Analysis of Symmetric Laminated Plates
,”
Compos. Str.
,
45
, pp.
227
232
.10.1016/S0263-8223(99)00028-8
94.
Umasree
,
P.
, and
Bhaskar
,
K.
,
2006
Analytical Solutions for Flexure of Clamped Rectangular Cross-Ply Plates Using an Accurate Zig–Zag Type Higher-Order Theory
,”
Compos. Str.
,
74
, pp.
426
439
.10.1016/j.compstruct.2005.04.023
95.
Ganapathi
,
M.
, and
Mackecha
,
D. P.
,
2001
, “
Free Vibration Analysis of Multi-Layered Composite Laminates Based on an Accurate Higher-Order Theory
,”
Compos. B. Eng.
,
32
, pp.
535
543
.10.1016/S1359-8368(01)00028-2
96.
Ganapathi
,
M.
,
Patel
,
B. P.
, and
Pawargi
,
D. S.
,
2002
, “
Dynamic Analysis of Laminated Cross-Ply Composite Non-Circular Thick Cylindrical Shells Using Higher-Order Theory
,”
Int. J. Sol. Str.
,
39
, pp.
5945
5962
.10.1016/S0020-7683(02)00495-X
97.
Ganapathi
,
M.
,
Patel
,
B. P.
, and
Makhecha
,
D. P.
,
2004
, “
Nonlinear Dynamic Analysis of Thick Composite/Sandwich Laminates Using an Accurate Higher-Order Theory
,”
Compos. B. Eng.
,
35
, pp.
345
355
.10.1016/S1359-8368(02)00075-6
98.
D'Ottavio
,
M.
,
Ballhause
,
D.
,
Kroplin
,
B.
, and
Carrera
,
E.
,
2006
, “
Closed-Form Solutions for the Free-Vibration Problem of Multilayered Piezoelectric Shells
,”
Comp. Str.
,
84
, pp.
1506
1518
.10.1016/j.compstruc.2006.01.030
99.
D'Ottavio
,
M.
,
Ballhause
,
D.
,
Wallmersperger
,
T.
, and
Kroplin
,
B.
,
2006
, “
Considerations on Higher-Order Finite Elements for Multilayered Plates Based on a Unified Formulation
,”
Comp. Str.
,
84
, pp.
1222
1235
.10.1016/j.compstruc.2006.01.025
100.
Vidal
,
P.
, and
Polit
,
O.
,
2011
, “
A Sine Finite Element Using a Zig-Zag Function for the Analysis of Laminated Composite Beams
,”
Compos. B. Eng.
,
42
, pp.
1671
1682
.10.1016/j.compositesb.2011.03.012
You do not currently have access to this content.