In this study, we propose governing differential equations for beams, taking into account shear deformation, rotary inertia, locality, and surface stress effects. It is shown that the equation is both simpler and more consistent than the appropriate Bresse–Timoshenko equations extended to include locality and surface stress effects. The proposed equation contains 11 terms with respect to displacement versus 19 terms appearing in the equations that extend the Bresse–Timoshenko equations to include nonlocality and surface effects.

References

References
1.
Timoshenko
,
S. P.
,
1921
, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
,
41
(
245
), pp.
744
746
.10.1080/14786442108636264
2.
Bresse
,
M.
,
1959
,
Cours de Mécanique Appliquée
,
Mallet-Bacheher
,
Paris (in French)
.
3.
Lord Rayleigh
,
1877–1878
,
The Theory of Sound
,
Macmillan
,
London
(see also
Dover
,
New York
,
1945
).
4.
Elishakoff
,
I.
,
2010
, “
An Equation Both More Consistent and Simpler Than the Bresse–Timoshenko Equation
,”
Advanced in Mathematical Modeling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume
,
R.
Gilat
and
L.
Banks-Sills
, eds.,
Springer
,
Berlin
, pp.
249
254
.
5.
Lu
,
P.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Zhang
,
P. Q.
,
2006
, “
Dynamic Properties of Flexural Beams Using a Nonlocal Elasticity Model
,”
J. Appl. Phys.
,
99
, p.
073510
.10.1063/1.2189213
6.
Lu
,
P.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Zhang
,
P. Q.
,
2007
, “
Application of Nonlocal Beam Models for Carbon Nanotubes
,”
Int. J. Solids Struct.
,
44
, pp.
5289
5300
.10.1016/j.ijsolstr.2006.12.034
7.
Lee
,
H.-L.
, and
Chang
,
W.-J.
,
2010
, “
Surface Effects on Frequency Analysis of Nanotubes Using Nonlocal Timoshenko Beam Theory
,”
J. Appl. Phys.
,
108
, p.
093503
.10.1063/1.3503853
8.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Xie
,
X. T.
,
2005
, “
Free Transverse Vibration of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity
,”
Phys. Rev. B
,
71
, p.
195404
.10.1103/PhysRevB.71.195404
9.
Reddy
,
J. N.
,
2007
, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams
,”
Int. J. Eng. Sci.
,
45
(
2–8
), pp.
288
307
.10.1016/j.ijengsci.2007.04.004
10.
Wang
,
C. M.
,
Zhang
,
Y. Y.
, and
He
,
X. Q.
,
2007
, “
Vibration of Nonlocal Timoshenko Beams
,”
Nanotechnology
,
18
(
10
), p.
105401
.10.1088/0957-4484/18/10/105401
11.
Eves
,
H.
,
1983
,
An Introduction to the History of Mathematics
,
5th ed.
,
Saunders College Publishing
,
Philadelphia
, p.
459
.
12.
Koiter
,
W. T.
,
1959
, “
A Consistent First Approximation in the General Theory of Thin Elastic Shells
,”
Proceedings, IUTAM Symposium in the Theory of Elastic Shells
, Delft, The Netherlands, August 24–28.
13.
Reissner
,
E.
,
1971
, “
On Consistent First Approximations in the General Linear Theory of Thin Elastic Shells
,”
Arch. Appl. Mech.
,
40
(
6
), pp.
402
419
.10.1007/BF00533975
14.
Krätzig
,
W. B.
,
1980
, “
On the Structure of Consistent Linear Shell Theories
,
Proceedings of the 3rd IUTAM Symposium on Shell Theory
, Tbilisi, USSR, August 22–28,
W. T.
Koiter
and
G. K.
Mikhailov
, eds.,
North-Holland
,
Amsterdam
, pp.
353
368
.
15.
Kienzler
,
R.
,
2002
, “
On Consistent Plate Theories
,”
Arch. Appl. Mech.
,
72
, pp.
229
247
.10.1007/s00419-002-0220-2
16.
Chao
,
C. C.
, and
Tung
,
T. P.
,
1992
, “
A 3-D Consistent Higher Order Laminated Shell Theory and Impact Damage Prediction
,” Localized Damage II, Vol. 1, M. H. Aliabadi, D. J. Cartwright, and H. Nisitani, eds., Computational Mechanics Publications, Southampton, UK, pp.
327
346
.
17.
Rescher
,
N.
,
1987
, “
How Serious a Fallacy is Inconsistency?
,”
Argumentation
,
1
(
3
), pp.
303
316
.10.1007/BF00136780
18.
Sadeghian
,
H.
,
Yang
,
C. K.
,
Babaei Gavan
,
K.
,
Goosen
,
J. F. L.
,
van der Drift
,
E. W. J. M.
,
van der Zant
,
H. S. J.
,
French
,
P. J.
,
Bossche
,
A.
, and
van Keulen
,
F.
,
2009
, “
Effects of Surface Stress on Nanocantilevers
,”
J. Surf. Sci. Nanotechnol.
,
7
, pp.
161
166
.10.1380/ejssnt.2009.161
You do not currently have access to this content.