In this study, we propose governing differential equations for beams, taking into account shear deformation, rotary inertia, locality, and surface stress effects. It is shown that the equation is both simpler and more consistent than the appropriate Bresse–Timoshenko equations extended to include locality and surface stress effects. The proposed equation contains 11 terms with respect to displacement versus 19 terms appearing in the equations that extend the Bresse–Timoshenko equations to include nonlocality and surface effects.
Issue Section:
Research Papers
References
1.
Timoshenko
, S. P.
, 1921
, “On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,” Philos. Mag.
, 41
(245
), pp. 744
–746
.10.1080/147864421086362642.
Bresse
, M.
, 1959
, Cours de Mécanique Appliquée
, Mallet-Bacheher
, Paris (in French)
.3.
Lord Rayleigh
, 1877–1878
, The Theory of Sound
, Macmillan
, London
(see also Dover
, New York
, 1945
).4.
Elishakoff
, I.
, 2010
, “An Equation Both More Consistent and Simpler Than the Bresse–Timoshenko Equation
,” Advanced in Mathematical Modeling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume
, R.
Gilat
and L.
Banks-Sills
, eds., Springer
, Berlin
, pp. 249
–254
.5.
Lu
, P.
, Lee
, H. P.
, Lu
, C.
, and Zhang
, P. Q.
, 2006
, “Dynamic Properties of Flexural Beams Using a Nonlocal Elasticity Model
,” J. Appl. Phys.
, 99
, p. 073510
.10.1063/1.21892136.
Lu
, P.
, Lee
, H. P.
, Lu
, C.
, and Zhang
, P. Q.
, 2007
, “Application of Nonlocal Beam Models for Carbon Nanotubes
,” Int. J. Solids Struct.
, 44
, pp. 5289
–5300
.10.1016/j.ijsolstr.2006.12.0347.
Lee
, H.-L.
, and Chang
, W.-J.
, 2010
, “Surface Effects on Frequency Analysis of Nanotubes Using Nonlocal Timoshenko Beam Theory
,” J. Appl. Phys.
, 108
, p. 093503
.10.1063/1.35038538.
Zhang
, Y. Q.
, Liu
, G. R.
, and Xie
, X. T.
, 2005
, “Free Transverse Vibration of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity
,” Phys. Rev. B
, 71
, p. 195404
.10.1103/PhysRevB.71.1954049.
Reddy
, J. N.
, 2007
, “Nonlocal Theories for Bending, Buckling and Vibration of Beams
,” Int. J. Eng. Sci.
, 45
(2–8
), pp. 288
–307
.10.1016/j.ijengsci.2007.04.00410.
Wang
, C. M.
, Zhang
, Y. Y.
, and He
, X. Q.
, 2007
, “Vibration of Nonlocal Timoshenko Beams
,” Nanotechnology
, 18
(10
), p. 105401
.10.1088/0957-4484/18/10/10540111.
Eves
, H.
, 1983
, An Introduction to the History of Mathematics
, 5th ed., Saunders College Publishing
, Philadelphia
, p. 459
.12.
Koiter
, W. T.
, 1959
, “A Consistent First Approximation in the General Theory of Thin Elastic Shells
,” Proceedings, IUTAM Symposium in the Theory of Elastic Shells
, Delft, The Netherlands, August 24–28.13.
Reissner
, E.
, 1971
, “On Consistent First Approximations in the General Linear Theory of Thin Elastic Shells
,” Arch. Appl. Mech.
, 40
(6
), pp. 402
–419
.10.1007/BF0053397514.
Krätzig
, W. B.
, 1980
, “On the Structure of Consistent Linear Shell Theories
, Proceedings of the 3rd IUTAM Symposium on Shell Theory
, Tbilisi, USSR, August 22–28, W. T.
Koiter
and G. K.
Mikhailov
, eds., North-Holland
, Amsterdam
, pp. 353
–368
.15.
Kienzler
, R.
, 2002
, “On Consistent Plate Theories
,” Arch. Appl. Mech.
, 72
, pp. 229
–247
.10.1007/s00419-002-0220-216.
Chao
, C. C.
, and Tung
, T. P.
, 1992
, “A 3-D Consistent Higher Order Laminated Shell Theory and Impact Damage Prediction
,” Localized Damage II, Vol. 1, M. H. Aliabadi, D. J. Cartwright, and H. Nisitani, eds., Computational Mechanics Publications, Southampton, UK, pp. 327
–346
.17.
Rescher
, N.
, 1987
, “How Serious a Fallacy is Inconsistency?
,” Argumentation
, 1
(3
), pp. 303
–316
.10.1007/BF0013678018.
Sadeghian
, H.
, Yang
, C. K.
, Babaei Gavan
, K.
, Goosen
, J. F. L.
, van der Drift
, E. W. J. M.
, van der Zant
, H. S. J.
, French
, P. J.
, Bossche
, A.
, and van Keulen
, F.
, 2009
, “Effects of Surface Stress on Nanocantilevers
,” J. Surf. Sci. Nanotechnol.
, 7
, pp. 161
–166
.10.1380/ejssnt.2009.161Copyright © 2013 by ASME
You do not currently have access to this content.