The present paper deals with the boundary layer flow and heat transfer of a non-Newtonian fluid at an exponentially stretching permeable surface. The Casson fluid model is used to characterize the non-Newtonian fluid behavior, due to its various practical applications. With the help of similarity transformations the governing partial differential equations corresponding to the continuity, momentum, and energy equations are converted into nonlinear ordinary differential equations, and numerical solutions to these equations are obtained. Furthermore, in some specific parameter regimes, analytical solutions are found. It is observed that the effect of increasing values of the Casson parameter is to decrease the velocity field while enhancing the temperature field. Furthermore, it is observed that the effect of the increasing values of the suction parameter is to increase the skin-friction coefficient.

References

References
1.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.10.1002/cjce.5450550619
2.
Magyari
,
E.
, and
Keller
,
B.
,
1999
, “
Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface
,”
J. Phys. D
,
32
, pp.
577
585
.10.1088/0022-3727/32/5/012
3.
Elbashbeshy
,
E. M. A.
,
2001
, “
Heat Transfer Over an Exponentially Stretching Continuous Surface With Suction
,”
Arc. Mech.
,
53
, pp.
643
651
.
4.
Khan
,
S. K.
,
2006
, “
Boundary Layer Viscoelastic Fluid Flow Over an Exponentially Stretching Sheet
,”
Int. J. Appl. Mech. Eng.
,
11
, pp.
321
335
.
5.
Sanjayanand
,
E.
, and
Khan
,
S. K.
,
2006
, “
On Heat and Mass Transfer in a Visco-Elastic Boundary Layer Flow Over an Exponentially Stretching Sheet
,”
Int. J. Thermal Sci.
,
45
, pp.
819
828
.10.1016/j.ijthermalsci.2005.11.002
6.
Sajid
,
M.
, and
Hayat
,
T.
,
2008
, “
Influence of Thermal Radiation on the Boundary Layer Flow Due to an Exponentially Stretching Sheet
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
347
356
.10.1016/j.icheatmasstransfer.2007.08.006
7.
Bidin
,
B.
, and
Nazar
,
R.
,
2009
, “
Numerical Solution of the Boundary Layer Flow Over an Exponentially Stretching Sheet With Thermal Radiation
,”
Euro. J. Sci. Resc.
,
33
(
4
), pp.
710
717
.
8.
El-Aziz
,
M. A.
,
2009
, “
Viscous Dissipation Effect on Mixed Convection Flow of a Micropolar Fluid Over an Exponentially Stretching Sheet
,”
Can. J. Phys.
,
87
, pp.
359
368
.10.1139/P09-047
9.
Nadeem
,
S.
,
Zaheer
,
S.
, and
Fang
,
T.
,
2011
, “
Effects of Thermal Radiation on the Boundary Layer Flow of a Jeffrey Fluid Over an Exponentially Stretching Surface
,”
Numer. Algor.
,
57
(
2
), pp.
187
205
.10.1007/s11075-010-9423-8
10.
Ishak
,
A.
,
2011
, “
MHD Boundary Layer Flow Due to an Exponentially Stretching Sheet With Radiation Effect
,”
Sains Malaysiana
,
40
, pp.
391
395
.
11.
Andersson
,
H. I.
, and
Dandapat
,
B. S.
,
1992
, “
Flow of a Power Law Fluid Over a Stretching Sheet
,”
Appl. Anal. Continuous Media
,
1
, pp.
339
347
.
12.
Hassanien
,
I. A.
,
1996
, “
Flow and Heat Transfer on a Continuous Flat Surface Moving in a Parallel Free Stream of Power-Law Fluid
,”
Appl. Model.
,
20
, pp.
779
784
.10.1016/0307-904X(96)00082-0
13.
Sadeghy
,
K.
, and
Sharifi
,
M.
,
2004
, “
Local Similarity Solution for the Flow of a ‘Second-Grade’ Viscoelastic Fluid Above a Moving Plate
,”
Int. J. Non-Linear Mech.
,
39
, pp.
1265
1273
.10.1016/j.ijnonlinmec.2003.08.005
14.
Serdar
,
B.
, and
Salih Dokuz
,
M.
,
2006
, “
Three-Dimensional Stagnation Point Flow of a Second Grade Fluid Towards a Moving Plate
,”
Int. J. Eng. Sci.
,
44
, pp.
49
58
.10.1016/j.ijengsci.2005.08.008
15.
Haroun
,
M. H.
,
2007
, “
Effect of Deborah Number and Phase Difference on Peristaltic Transport of a Third-Order Fluid in an Asymmetric Channel
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
, pp.
1464
1480
.10.1016/j.cnsns.2006.03.002
16.
Siddiqui
,
A. M.
,
Zeb
,
A.
,
Ghori
,
Q. K.
, and
Benharbit
,
A. M.
,
2008
, “
Homotopy Perturbation Method for Heat Transfer Flow of a Third Grade Fluid Between Parallel Plates
,”
Chaos Solitons Fractals
,
36
, pp.
182
192
.10.1016/j.chaos.2006.06.037
17.
Sajid
,
M.
,
Ahmad
,
I.
,
Hayat
,
T.
, and
Ayub
,
M.
,
2009
, “
Unsteady Flow and Heat Transfer of a Second Grade Fluid Over a Stretching Sheet
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
96
108
.10.1016/j.cnsns.2007.07.014
18.
Heyhat
,
M. M.
, and
Khabazi
,
N.
,
2011
, “
Non-Isothermal Flow of Maxwell Fluids Above Fixed Flat Plates Under the Influence of a Transverse Magnetic Field
,”
Proc. IMechE
,
225
, pp. 909–916.
19.
Hayat
,
T.
,
Awais
,
M.
, and
Sajid
,
M.
,
2011
, “
Mass Transfer Effects on the Unsteady Flow of UCM Fluid Over a Stretching Sheet
,”
Int. J. Mod. Phys. B
,
25
, pp.
2863
2878
.10.1142/S0217979211101375
20.
Fung
,
Y. C.
,
1984
,
Biodynamics Circulation
,
Springer
,
New York
.
21.
Dash
,
R. K.
,
Mehta
,
K. N.
, and
Jayaraman
,
G.
,
1996
, “
Casson Fluid Flow in a Pipe Filled With a Homogeneous Porous Medium
,”
Int. J. Eng. Sci.
,
34
(
10
), pp.
1145
1156
.10.1016/0020-7225(96)00012-2
22.
Eldabe
,
N. T. M.
, and
Salwa
,
M. G. E.
,
1995
, “
Heat Transfer of MHD Non-Newtonian Casson Fluid Flow Between Two Rotating Cylinders
,”
J. Phys. Soc. Jpn.
,
64
, pp.
41
64
.10.1143/JPSJ.64.4163
23.
Boyd
,
J.
,
Buick
,
J. M.
, and
Green
,
S.
,
2007
, “
Analysis of the Casson and Carreau-Yasuda Non-Newtonian Blood Models in Steady and Oscillatory Flow Using the Lattice Boltzmann Method
,”
Phys. Fluids
,
19
, pp.
93
103
.10.1063/1.2772250
24.
Mustafa
,
M.
,
Hayat
,
T.
,
Pop
,
I.
, and
Aziz
,
A.
,
2011
, “
Unsteady Boundary Layer Flow of a Casson Fluid Due to an Impulsively Started Moving Flat Plate
,”
Heat Transfer-Asian Res.
,
40
(
6
), pp.
563
576
.10.1002/htj.20358
25.
Bhattacharyya
,
K.
,
2011
, “
Boundary Layer Flow and Heat Transfer Over an Exponentially Shrinking Sheet
,”
Chin. Phys. Lett.
,
28
(
7
), p.
074701
.10.1088/0256-307X/28/7/074701
26.
Liao
,
S. J.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
27.
Liao
,
S. J.
,
1999
, “
An Explicit, Totally Analytic Approximation of Blasius' Viscous Flow Problems
,”
Int. J. Non-Linear Mech.
,
34
, pp.
759
778
.10.1016/S0020-7462(98)00056-0
28.
Liao
,
S. J.
,
2004
, “
On the Homotopy Analysis Method for Nonlinear Problems
,”
Appl. Math. Comput.
,
147
, pp.
499
513
.10.1016/S0096-3003(02)00790-7
29.
Liao
,
S. J.
, and
Tan
,
Y.
,
2007
, “
A General Approach to Obtain Series Solutions of Nonlinear Differential Equations
,”
Studies Appl. Math.
,
119
, pp.
297
354
.10.1111/j.1467-9590.2007.00387.x
30.
Liao
,
S. J.
,
2009
, “
Notes on the Homotopy Analysis Method: Some Definitions and Theorems
,”
Commun. Nonlinear Sci. Numerical Simulat.
,
14
, pp.
983
997
.10.1016/j.cnsns.2008.04.013
31.
Van Gorder
,
R. A.
, and
Vajravelu
,
K.
,
2009
, “
On the Selection of Auxiliary Functions, Operators, and Convergence Control Parameters in the Application of the Homotopy Analysis Method to Nonlinear Differential Equations: A General Approach
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
14
, pp.
4078
4089
.10.1016/j.cnsns.2009.03.008
32.
Van Gorder
,
R. A.
, and
Vajravelu
,
K.
,
2011
, “
Multiple Solutions for Hydromagnetic Flow of a Second Grade Fluid Over a Stretching or Shrinking Sheet
,”
Q. Appl. Math.
,
69
, pp.
405
424
.
33.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
ZAMP
,
21
, pp.
645
647
.10.1007/BF01587695
34.
Van Gorder
,
R. A.
, and
Vajravelu
,
K.
,
2011
, “
Convective Heat Transfer in a Conducting Fluid Over a Permeable Stretching Surface With Suction and Internal Heat Generation/Absorption
,”
Appl. Math. Comput.
,
217
, pp.
5810
5821
.10.1016/j.amc.2010.12.063
35.
Troy
,
W. C.
,
Overman
,
E. A.
,
Ermentrout
,
G. B.
, and
Keener
,
J. P.
,
1987
, “
Uniqueness of Flow of a Second Order Fluid Past a Stretching Sheet
,”
Q. Appl. Math.
,
44
, pp.
753
755
.
36.
Vajravelu
,
K.
, and
Rollins
,
D.
,
2004
, “
Hydromagnetic Flow of a Second Grade Fluid Over a Stretching Sheet
,”
Appl. Math. Comput.
,
148
, pp.
783
791
.10.1016/S0096-3003(02)00942-6
37.
Fang
,
T.
, and
Zhang
,
J.
,
2009
, “
Closed-Form Exact Solutions of MHD Viscous Flow Over a Shrinking Sheet
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
14
, pp.
2853
2857
.10.1016/j.cnsns.2008.10.005
38.
Abel
,
M. S.
, and
Nandeppanavar
,
M. M.
,
2009
, “
Heat Transfer in MHD Viscoelastic Boundary Layer Flow Over a Stretching Sheet With Non-Uniform Heat Source/Sink
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
14
, pp.
2120
2131
.10.1016/j.cnsns.2008.06.004
39.
Chakrabarti
,
A.
, and
Gupta
,
A. S.
,
1979
, “
Hydromagnetic Flow and Heat Transfer Over a Stretching Sheet
,”
Q. Appl. Math.
,
37
, pp.
73
78
.
40.
Vajravelu
,
K.
, and
Rollins
,
D.
,
1992
, “
Heat Transfer in an Electrically Conducting Fluid Over a Stretching Sheet
,”
Int. J. Non-Linear Mech.
,
27
, pp.
265
277
.10.1016/0020-7462(92)90085-L
41.
Andersson
,
H. I.
,
1995
, “
An Exact Solution of the Navier–Stokes Equations for Magnetohydro-Dynamic Flow
,”
Acta Mech.
,
113
, pp.
241
244
.10.1007/BF01212646
42.
Pop
,
I.
, and
Na
,
T. Y.
,
1998
, “
A Note on MHD Flow Over a Stretching Permeable Surface
,”
Mech. Res. Commun.
,
25
, pp.
263
269
.10.1016/S0093-6413(98)00037-8
43.
Liao
,
S.
,
2010
, “
An Optimal Homotopy-Analysis Approach for Strongly Nonlinear Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
15
, pp.
2315
2332
.10.1016/j.cnsns.2009.09.002
44.
Van Gorder
,
R. A.
,
2012
, “
Gaussian Waves in the Fitzhugh-Nagumo Equation Demonstrate One Role of the Auxiliary Function H(x) in the Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
17
, pp.
1233
1240
.10.1016/j.cnsns.2011.07.036
45.
Van Gorder
,
R. A.
,
2012
, “
Analytical Method for the Construction of Solutions to the Foppl-Von Karman Equations Governing Deflections of a Thin Flat Plate
,”
Int. J. Non-Linear Mech.
,
47
, pp.
1
6
.10.1016/j.ijnonlinmec.2012.01.004
46.
Van Gorder
,
R. A.
,
2013
, “
Control of Error in the Homotopy Analysis of Semi-Linear Elliptic Boundary Value Problems
,”
Numer. Algor.
,
61
, pp.
613
629
.10.1007/s11075-012-9554-1
You do not currently have access to this content.