Unique, explicit, and exact expressions for the first- and second-order derivatives of the three-dimensional Green's function for general anisotropic materials are presented in this paper. The derived expressions are based on a mixed complex-variable method and are obtained from the solution proposed by Ting and Lee (Ting and Lee, 1997,“The Three-Dimensional Elastostatic Green's Function for General Anisotropic Linear Elastic Solids,” Q. J. Mech. Appl. Math. 50, pp. 407–426) which has three valuable features. First, it is explicit in terms of Stroh's eigenvalues pα (α=1,2,3) on the oblique plane with normal coincident with the position vector; second, it remains well-defined when some Stroh's eigenvalues are equal (mathematical degeneracy) or nearly equal (quasi-mathematical degeneracy); and third, they are exact. Therefore, both new proposed solutions inherit these appealing features, being explicit in terms of Stroh's eigenvalues, simpler, unique, exact and valid independently of the kind of degeneracy involved, as opposed to previous approaches. A study of all possible degenerate cases validate the proposed scheme.

References

References
1.
Fredholm
,
I.
,
1898
, “
Sur les équations de l’équilibre d’un corps solide élastique
,”
Acta Math.
,
23
, pp.
1
42
.10.1007/BF02418668
2.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
2nd ed.
,
Kluwer
,
Dordrecht, The Netherlands
.
3.
Aliabadi
,
M. H.
,
2002
,
The Boundary Element Method: Applications in Solids and Structures
, Vol. 2,
John Wiley & Sons
,
New York
.
4.
Balaš
,
J.
,
Sládek
,
J.
, and
Sládek
,
V.
,
1989
,
Stress Analysis by Boundary Element Method
,
Elsevier
,
Amsterdam
.
5.
Brebbia
,
C. A.
, and
Domínguez
,
J.
,
1992
,
Boundary Elements: An Introductory Course
,
WIT
,
Southampton, UK
.
6.
Liu
,
Y. J.
,
Mukherjee
,
S.
,
Nishimura
,
N.
,
Schanz
,
M.
,
Ye
,
W.
,
Sutradhar
,
A.
,
Pan
,
E.
,
Dumont
,
N. A.
,
Frangi
,
A.
, and
Sáez
,
A.
,
2011
, “
Recent Advances and Emerging Applications of the Boundary Element Method
,”
Appl. Mech. Rev.
,
64
(
3
), p.
031001
.10.1115/1.4005491
7.
Lifshitz
,
I. M.
, and
Rosenzweig
,
L. N.
,
1947
, “
Construction of the Green Tensor for the Fundamental Equation of Elasticity Theory in the Case of Unbounded Elastically Anisotropic Medium
,”
Zh. Eksp. Teor. Fiz.
,
17
, pp.
783
789
.
8.
Ting
,
T. C. T.
,
1996
,
Anisotropic Elasticity. Theory and Applications
,
Oxford University Press
,
New York
.
9.
Nakamura
,
G.
, and
Tanuma
,
K.
,
1997
, “
A Formula for the Fundamental Solution of Anisotropic Elasticity
,”
Q. J. Mech. Appl. Math.
,
50
(
2
), pp.
179
194
.10.1093/qjmam/50.2.179
10.
Wang
,
C. Y.
,
1997
, “
Elastic Fields Produced by a Point Source in Solids of General Anisotropy
,”
J. Eng. Math.
,
32
, pp.
41
52
.10.1023/A:1004289831587
11.
Phan
,
A. V.
,
Gray
,
L. J.
, and
Kaplan
,
T.
,
2004
, “
On the Residue Calculus Evaluation of the 3-D Anisotropic Elastic Green's Function
,”
Commun. Numer. Methods Eng.
,
20
(
5
), pp.
335
341
.10.1002/cnm.675
12.
Ting
,
T. C. T.
, and
Lee
, V
. G.
,
1997
, “
The Three-Dimensional Elastostatic Green's Function for General Anisotropic Linear Elastic Solids
,”
Q. J. Mech. Appl. Math.
,
50
(
3
), pp.
407
426
.10.1093/qjmam/50.3.407
13.
Lavagnino
,
A. M.
,
1995
, “
Selected Static and Dynamic Problems in Anisotropic Linear Elasticity
,” Ph.D. dissertation, Stanford University, Stanford, CA.
14.
Phan
,
A. V.
,
Gray
,
L. J.
, and
Kaplan
,
T.
,
2005
, “
Residue Approach for Evaluating the 3D Anisotropic Elastic Green's Function: Multiple Roots
,”
Eng. Anal. Boundary Elem.
,
29
(
6
), pp.
570
576
.10.1016/j.enganabound.2004.12.012
15.
Barnett
,
D. M.
,
1972
, “
The Precise Evaluation of Derivatives of the Anisotropic Elastic Green's Function
,”
Phys. Status Solidi B
,
49
, pp.
741
748
.10.1002/pssb.2220490238
16.
Lee
, V
. G.
,
2003
, “
Explicit Expression of Derivatives of Elastic Green's Functions for General Anisotropic Materials
,”
Mech. Res. Commun.
,
30
(
3
), pp.
241
249
.10.1016/S0093-6413(03)00007-7
17.
Buroni
,
F. C.
,
Ortiz
,
J. E.
, and
Sáez
,
A.
,
2011
, “
Multiple Pole Residue Approach for 3D BEM Analysis of Mathematical Degenerate and Nondegenerate Materials
,”
Int. J. Numer. Methods Eng.
,
86
(
9
), pp.
1125
1143
.10.1002/nme.3096
18.
Lee
, V
. G.
,
2009
, “
Derivatives of the Three-Dimensional Green's Functions for Anisotropic Materials
,”
Int. J. Solids Struct.
,
46
(
18–19
), pp.
3471
3479
.10.1016/j.ijsolstr.2009.06.002
19.
Shiah
,
Y. C.
,
Tan
,
C. L.
, and
Lee
,
R. F.
,
2010
, “
Internal Point Solutions for Displacements and Stresses in 3D Anisotropic Elastic Solids Using the Boundary Element Method
,”
Comput. Model. Eng. Sci.
,
69
(
2
), pp.
167
197
.10.3970/cmes.2010.069.167
20.
Tonon
,
F.
,
Pan
,
E.
, and
Amadei
,
B.
,
2001
, “
Green's Functions and Boundary Element Method Formulation for 3D Anisotropic Media
,”
Comput. Struct.
,
79
, pp.
469
482
.10.1016/S0045-7949(00)00163-2
21.
Wilson
,
R. B.
, and
Cruse
,
T. A.
,
1978
, “
Efficient Implementation of Anisotropic Three Dimensional Boundary-Integral Equation Stress Analysis
,”
Int. J. Numer. Methods Eng.
,
12
, pp.
1383
1397
.10.1002/nme.1620120907
22.
Mura
,
T.
, and
Kinoshita
,
N.
,
1971
, “
Green's Functions for Anisotropic Elasticity
,”
Phys. Status Solidi B
,
47
, pp.
607
618
.10.1002/pssb.2220470226
23.
Shiah
,
Y. C.
,
Tan
,
C. L.
, and
Wang
,
C. Y.
,
2012
, “
Efficient Computation of the Green's Function and Its Derivatives for Three-Dimensional Anisotropic Elasticity in BEM Analysis
,”
Eng. Anal. Boundary Elem.
,
36
(
12
), pp.
1746
1755
.10.1016/j.enganabound.2012.05.008
24.
Távara
,
L.
,
Ortiz
,
J. E.
,
Mantič
, V
.
, and
París
,
F.
,
2008
, “
Unique Real-Variable Expressions of Displacement and Traction Fundamental Solutions Covering All Transversely Isotropic Elastic Materials for 3D BEM
,”
Int. J. Numer. Methods Eng.
,
74
, pp.
776
798
.10.1002/nme.2176
25.
Távara
,
L.
,
Mantič
, V
.
,
Ortiz
,
J. E.
, and
París
,
F.
,
2012
, “
Unique Real-Variable Expressions of the Integral Kernels in the Somigliana Stress Identity Covering All Transversely Isotropic Elastic Materials for 3D BEM
,”
Comput. Methods Appl. Mech. Eng.
,
225
, pp.
128
141
.10.1016/j.cma.2012.03.014
26.
Eshelby
,
J. D.
,
Read
,
W. T.
, and
Shockley
,
W.
,
1953
, “
Anisotropic Elasticity With Applications to Dislocation Theory
,”
Acta Metall.
,
1
, pp.
251
259
.10.1016/0001-6160(53)90099-6
27.
Stroh
,
A. N.
,
1962
, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
(
2
), pp.
77
103
.
28.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
(
30
), pp.
625
646
.10.1080/14786435808565804
29.
Lekhnitskii
,
S.
,
1963
Theory of Elasticity of an Anisotropic Elastic Body
,
MIR
,
Moscow
.
30.
Suo
,
Z.
,
1990
, “
Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,”
Proc. R. Soc. London, Ser. A
,
427
(
1873
), pp.
331
358
.10.1098/rspa.1990.0016
31.
Yin
,
W. L.
,
2005
, “
Green's Functions of Bimaterials Comprising All Cases of Material Degeneracy
,”
Int. J. Solids Struct.
,
42
, pp.
1
19
.10.1016/j.ijsolstr.2004.07.006
32.
Barnett
,
D. M.
, and
Kirchner
,
H. O. K.
,
1997
, “
A Proof of the Equivalence of the Stroh and Lekhnitskii Sextic Equations for Plane Anisotropic Elastostatics
,”
Philos. Mag.
,
76
(
1
), pp.
231
239
.10.1080/01418619708209971
33.
Ting
,
T. C. T.
,
1997
, “
New Explicit Expression of Barnett-Lothe Tensors for Anisotropic Linear Elastic Materials
,”
J. Elast.
,
47
, pp.
23
50
.10.1023/A:1007394313111
34.
Ingebrigtsen
,
K.
, and
Tonning
,
A.
,
1969
, “
Elastic Surface Waves in Crystals
,”
Phys. Rev.
,
184
(
3
), pp.
942
951
.10.1103/PhysRev.184.942
35.
Mantič
, V
.
,
Távara
,
L.
,
Ortiz
,
J. E.
, and
París
,
F.
,
2012
, “
Recent Developments in the Evaluation of the 3D Fundamental Solution and Its Derivatives for Transversely Isotropic Elastic Materials
,”
Electron. J. Boundary Elem.
,
10
, pp.
1
41
.
36.
Malén
,
K.
, and
Lothe
,
J.
,
1970
, “
Explicit Expressions for Dislocation Derivatives
,”
Phys. Status Solidi B
,
39
, pp.
287
296
.10.1002/pssb.19700390130
37.
Tanuma
,
K.
,
1996
, “
Surface-Impedance Tensors of Transversely Isotropic Elastic Materials
,”
Q. J. Mech. Appl. Math.
,
49
(
4
), pp.
29
48
.10.1093/qjmam/49.1.29
You do not currently have access to this content.