A horizontally multilayered Green elastic transversely isotropic half-space is considered as the domain of the boundary value problem involved in this paper, such that the axes of material symmetry of different layers are parallel to the axis of material symmetry of the lowest half-space, which is depthwise. The domain is assumed to be affected by an arbitrary time-harmonic forced vibration due to a rigid rectangular surface foundation. With the use of a potential function method and the Hankel integral transforms, the displacements and stresses Green's functions are determined in each layer. The unknown functions due to integrations in each layer are transformed to the unknown functions of the surface layer with the use of the concept of propagator matrix and the continuity conditions. The mixed boundary conditions at the surface of the whole domain are numerically satisfied with the assumption of piecewise constant distribution of tractions in the contact area. It is numerically shown that the surface displacement and stress boundary conditions are satisfied very well. The vertical and horizontal impedance functions of the rectangular foundation are determined, which may be used as lumped parameters in time-harmonic soil-structure interaction with transversely isotropic horizontally layered domain as the soil. It is shown that the impedance functions determined in this paper coincide with the same functions for the simpler case of isotropic homogeneous half-space as degenerations of this study.

References

References
1.
Lamb
,
H.
,
1904
, “
On the Propagation Tremors Over the Surface of an Elastic Solid
,”
Philos. Trans. R. Soc. London Ser. A
,
203
, pp.
1
42
.10.1098/rsta.1904.0013
2.
Ewing
,
W. M.
, and
Jardetzky
,
W. S.
,
1957
,
Elastic Waves in Layered Media
,
McGraw-Hill
,
New York
.
3.
Achenbach
,
J. D.
,
1973
,
Wave Propagation in Elastic Solids
,
North-Holland
,
Amsterdam, The Netherlands
.
4.
Aki
,
K.
, and
Richards
,
P. G.
,
1980
,
Quantitative Seismology: Theory and Methods, Vols. I and II
,
W. H. Freeman and Company
,
San Francisco
.
5.
Apsel
,
R. J.
, and
Luco
,
J. E.
,
1983
, “
On The Green Function For a Layered Half-Space, Part II
,”
J. Bull. Seismol. Soc. Am.
,
73
(
4
), pp.
931
951
.
6.
Miklowitz
,
J.
,
1978
,
The Theory of Elastic Waves and Waveguides
,
North-Holland
,
Amsterdam, The Netherlands
.
7.
Pak
,
R. Y. S.
, and
Guzina
,
B. B.
,
2002
, “
Three-Dimensional Green's Functions for a Multilayered Half Space in Displacement Potentials
,”
J. Eng. Mech.
,
128
(
4
), pp.
449
461
.10.1061/(ASCE)0733-9399(2002)128:4(449)
8.
Gridin
,
D.
, and
Fradkin
,
L. J.
,
2001
, “
The Complete Far-Field Asymptotic Description of a Point Source Acting on a Transversely Isotropic Half-Space
,”
Proc. R. Soc. London Ser. A
,
457
, pp.
2675
2698
.10.1098/rspa.2001.0844
9.
Charlesworth
,
J. P.
, and
Temple
,
J. A. G.
,
1989
,
Engineering Applications of Ultrasonic Time-of-Flight Diffraction
,
Research Studies
,
Baldock, UK
.
10.
Rajapakse
,
R. K. N. D.
, and
Wang
Y.
,
1993
, “
Green's Functions for Transversely Isotropic Elastic Half-Space
,”
J. Eng. Mech.
,
119
(
9
), pp.
1724
1746
.10.1061/(ASCE)0733-9399(1993)119:9(1724)
11.
Wang
,
C. Y.
, and
Achenbach
,
J. D.
,
1996
, “
Lamb's Problem for Solids of General Anisotropy
,”
Wave Motion
,
24
(
3
), pp.
227
242
.10.1016/S0165-2125(96)00016-9
12.
Liu
,
G. R.
, and
Lam
,
K. Y.
,
1996
, “
Two-Dimensional Time-Harmonic Elastodynamic Green's Functions for Anisotropic Media
,”
Int. J. Eng. Sci.
,
34
(
11
), pp.
1327
1338
.10.1016/0020-7225(96)00040-7
13.
Eskandari-Ghadi
,
M.
,
Sture
,
S.
,
Pak
,
R. Y. S.
, and
Ardeshir-Behrestaghi
,
A.
,
2009
, “
Elastostatic Green's Functions for an Arbitrary Internal Load in a Transversely Isotropic Bi-Material Full-Space
,”
Int. J. Solids Struct.
,
46
, pp.
1121
1133
.10.1016/j.ijsolstr.2008.10.026
14.
Harding
,
J. W.
, and
Sneddon
,
I. N.
,
1954
, “
The Elastic Stresses Produced by the Indentation of the Plane Surface of a Semi-Infinite Elastic Solid by a Rigid Punch
,”
Proc. Cambridge Philos. Soc.
,
41
(
1
), pp.
16
26
.10.1017/S0305004100022325
15.
Keer
,
L. M.
,
1967
, “
Mixed Boundary Value Problems for an Elastic Half-Space
,”
Proc. Cambridge Philos. Soc.
,
63
(
4
), pp.
1379
1386
.10.1017/S0305004100042390
16.
Kassir
,
M. K.
, and
Sih
,
G. C.
,
1968
, “
Some Three-Dimensional Inclusion Problems in Elasticity
,”
Int. J. Solid Struct.
,
4
, pp.
225
241
.10.1016/0020-7683(68)90012-7
17.
Selvadurai
,
A. P. S.
,
1980
, “
Asymmetric Displacements of a Rigid Disc Inclusion Embedded in a Transversely Isotropic Elastic Medium of Infinite Extent
,”
Int. J. Eng. Sci.
,
18
, pp.
979
986
.10.1016/0020-7225(80)90070-1
18.
Rajapakse
,
R. K. N. D.
, and
Selvadurai
A. P. S.
,
1989
, “
Torsion of Foundations Embedded in a Non-Homogeneous Soil With a Weathered Crust
,”
Geotechnique
,
39
(
3
), pp.
485
496
.10.1680/geot.1989.39.3.485
19.
Reissner
,
E.
, and
Sagoci
,
H. F.
,
1944
, “
Forced Torsional Oscillations of an Elastic Half Space
,”
J. Appl. Phys.
,
15
,
652
654
.10.1063/1.1707489
20.
Arnold
,
R. N.
,
Bycroft
,
G. N.
, and
Warburton
,
G. B.
,
1955
, “
Forced Vibrations of a Body on an Infinite Elastic Solid
,”
ASME J. Appl. Mech.
,
77
, pp.
391
401
.
21.
Bycroft
,
G. N.
,
1956
, “
Forced Vibrations of a Rigid Circular Footing on a Semi-Infinite Elastic Space and on a Elastic Stratum
,”
Philos. Trans. R. Soc. London
,
248A
, pp.
3327
3368
.
22.
Awajobi
,
A. O.
, and
Grootenhuis
,
P.
,
1965
, “
Vibration of Rigid Bodies on Semi-Infinite Elastic Media
,”
Proc. R. Soc. London
,
287A
, pp.
27
63
.
23.
Robertson
,
I. A.
,
1966
, “
Forced Vertical Vibration of a Rigid Circular Disc on a Semi-Infinite Elastic Solid
,”
Proc. Cambridge Philos. Soc.
,
62A
, pp.
547
553
.10.1017/S0305004100040184
24.
Gladwell
,
G. M. L.
,
1968
, “
Tangential and Rotatory Vibration of a Rigid Circular Disc on a Semi-Infinite Solid
,”
Int. J. Eng Sci.
,
6
, pp.
591
607
.10.1016/0020-7225(68)90061-X
25.
Luco
,
J. E.
, and
Westmann
,
R. A.
,
1971
, “
Dynamic Response of Circular Footing
,”
J. Eng. Mech. Div.
,
97
(
5
), pp.
1381
1395
.
26.
Luco
,
J. E.
, and
Mita
,
A.
,
1987
, “
Response of a Circular Foundation on a Uniform Half-Space to Elastic Waves
,”
Earthquake Eng. Struct. Dyn.
,
15
, pp.
105
118
.10.1002/eqe.4290150108
27.
Pak
,
R. Y. S.
, and
Gobert
,
A. T.
,
1991
, “
Forced Vertical Vibration of Rigid Discs With an Arbitrary Embedment
,”
J. Eng. Mech.
,
117
(
11
), pp.
2527
2548
.10.1061/(ASCE)0733-9399(1991)117:11(2527)
28.
Eskandari-Ghadi
,
M.
,
Mirzapour
,
A.
, and
Ardeshir-Behrestaghi
,
A.
,
2010
, “
Rocking Vibration of Rigid Circular Disc in a Transversely Isotropic Full-Space
,”
Int. J. Numer. Anal. Geomech.
,
35
, pp.
1587
1603
.10.1002/nag.976
29.
Eskandari-Ghadi
,
M.
, and
Ardeshir-Behrestaghi
,
A.
,
2010
, “
Forced Vertical Vibration of Rigid Circular Disc Buried in an Arbitrary Depth of a Transversely Isotropic Half-Space
,”
Soil Dyn. Earthquake Eng.
,
30
(
7
), pp.
547
560
.10.1016/j.soildyn.2010.01.011
30.
Eskandari-Ghadi
,
M.
,
Fallahi
,
M.
, and
Ardeshir-Behrestaghi
,
A.
2010
, “
Forced Vertical Vibration of Rigid Circular Disc on a Transversely Isotropic Half-Space
,”
J. Eng. Mech.
,
136
(
7
), pp.
913
922
.10.1061/(ASCE)EM.1943-7889.0000114
31.
Wong
,
H. L.
, and
Luco
,
J. E.
,
1976
, “
Dynamic Response of Rigid Foundation of Arbitrary Shape
,”
Earthquake Eng. Struct. Dyn.
,
4
, pp.
579
587
.10.1002/eqe.4290040606
32.
Thomson
,
W. T.
, and
Kobori
,
T.
,
1963
, “
Dynamical Compliance of Rectangular Foundations on an Elastic Half-Space
,”
ASME J. Appl. Mech.
,
30
, pp.
579
584
.10.1115/1.3636622
33.
Cagniard
,
L.
,
1962
,
Reflection and Refraction of Progressive Seismicwaves
,
McGraw-Hill
,
New York
.
34.
Gilbert
,
F.
, and
Helmberger
,
D. V.
,
1972
, “
Generalized Ray Theory for a Layered Sphere
,”
Geophys. J. R. Astron. Soc.
,
27
, pp.
57
80
.10.1111/j.1365-246X.1972.tb02347.x
35.
Chapman
,
C. H.
,
1976
, “
Exact and Approximate Generalized Ray Theory in Vertically Inhomogeneous Media
.”
Geophys. J. R. Astron. Soc.
,
46
, pp.
201
233
.10.1111/j.1365-246X.1976.tb04154.x
36.
Zhou
C.
,
Hsu
,
N. N.
,
Popovics
,
J. S.
, and
Achenback
,
J. D.
,
2000
, “
Response of Two Layers Overlaying a Half-Space to a Suddenly Applied Point Force
,”
Wave Motion.
,
31
, pp.
255
272
.10.1016/S0165-2125(99)00020-7
37.
Fuchs
,
K.
,
1970
, “
On the Determination of Velocity Depth Distributions of Elastic Waves From the Dynamic Characteristics of the Reflected Wave Field
,”
Z. Geophys.
,
36
, pp.
531
548
.
38.
Fuchs
,
K.
, and
Muller
,
G.
,
1971
, “
Computation of Synthetic Seismograms With the Reflectivity Method and Comparison With Observations
,”
Geophys. J. R. Astron. Soc.
,
23
, pp.
417
433
.10.1111/j.1365-246X.1971.tb01834.x
39.
Thomson
,
W. T.
,
1950
, “
Transmission of Elastic Waves Through a Stratified Soil Medium
,”
J. Appl. Phys.
,
21
, pp.
89
93
.10.1063/1.1699629
40.
Haskel
,
N. A.
,
1953
, “
The Dispersion of Surface Waves in Multilayered Media
,”
Bull. Seismol. Soc. Am.
,
43
, pp.
17
34
.
41.
Knopoff
,
L.
,
1964
, “
A Matrix Method for Elastic Waves Problems
,”
Bull. Seismol. Soc. Am.
,
54
, pp.
431
438
.
42.
Khojasteh
,
A.
,
Rahimian
,
M.
,
Eskandari
,
M.
, and
Pak
,
R. Y. S.
,
2011
, “
Three-Dimensional Dynamic Green's Functions for a Multilayered Transversely Isotropic Half-Space
,”
Int. J. Solids Struct.
,
48
(
9
), pp.
1349
1361
.10.1016/j.ijsolstr.2011.01.020
43.
Noble
,
B.
,
1967
, “
The Solution of Bessel Function Dual Integral Equations by a Multiplying-Factor Method
,”
Proc. Cambridge Philos. Soc.
,
59
, pp.
351
371
.10.1017/S0305004100036987
44.
Lekhnitskii
,
S. G.
,
1981
,
Theory of Elasticity of an Anisotropic Elastic Body
,
Mir
,
Moscow
.
45.
Eskandari-Ghadi
,
M.
,
2005
, “
A Complete Solutions of the Wave Equations for Transversely Isotropic Media
,”
J. Elast.
,
81
, pp.
1
19
.10.1007/s10659-005-9000-x
46.
Eskandari-Ghadi
,
M.
,
Pak
,
R. Y. S.
, and
Ardeshir-Behrestaghi
,
A.
,
2008
, “
Transversely Isotropic Elastodynamic Solution of a Finite Layer on an Infinite Subgrade Under Surface Loads
,”
Soil Dyn. Earthquake Eng.
,
28
, pp.
986
1003
.10.1016/j.soildyn.2007.10.019
47.
Tichmarsh
,
E. C.
,
1948
,
Introduction to the Theory of Fourier Integrals
,
2nd ed.
,
Clarendon
,
Oxford
.
48.
Erdelyi
,
A.
, and
Sneddon
,
I. N.
,
1948
, “
Fractional Integral Equation and Dual Integral Equations
,”
Can. J. Math
,
14
, pp.
685
693
.10.4153/CJM-1962-058-6
49.
Luco
,
J. E.
,
1974
, “
Impedance Function for a Rigid Foundation on a Layered Medium
,”
J. Nucl. Eng. Design
,
31
, pp.
204
217
.10.1016/0029-5493(75)90142-9
You do not currently have access to this content.