Micro and nanomechanics are growing fields in the semiconductor and related industries. Consequently obstacles, such as particles trapped between layers, are becoming more important and warrant further attention. In this paper a numerical solution to the von Kármán equations for moderately large deflection is used to model a plate deformed due to a trapped particle lying between it and a rigid substrate. Due to the small scales involved, the effect of adhesion is included. The recently developed moment-discontinuity method is used to relate the work of adhesion to the contact radius without the explicit need to calculate the total potential energy. Three different boundary conditions are considered—the full clamp, the partial clamp, and the compliant clamp. Curve-fit equations are found for the numerical solution to the nondimensional coupled nonlinear differential equations for moderately large deflection of an axisymmetric plate. These results are found to match the small deflection theory when the deflection is less than the plate thickness. When the maximum deflection is much greater than the plate thickness, these results represent the membrane theory for which an approximate analytic solution exists.

References

References
1.
Schmidt
,
M. A.
,
1998
, “
Wafer-to-Wafer Bonding for Microstructure Formation
,”
Proc. IEEE
,
86
(
8
), pp.
1575
1585
.10.1109/5.704262
2.
Gösele
,
U.
, and
Tong
,
Q. Y.
,
1998
, “
Semiconductor Wafer Bonding
,”
Ann. Rev. Mater. Sci.
,
28
(
1
), pp.
215
241
.10.1146/annurev.matsci.28.1.215
3.
Pamp
,
A.
, and
Adams
,
G. G.
,
2007
, “
Deformation of Bowed Silicon Chips Due to Adhesion and Applied Pressure
,”
J. Adhes. Sci. Technol.
,
21
(
11
), pp.
1021
1043
.10.1163/156856107782105963
4.
International Roadmap Committee,
2011
, “
International Technology Roadmap for Semiconductors, 2011 Edition
,” Semiconductor Industry Association, http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf
5.
Zong
,
Z.
,
Chen
,
C. L.
,
Dokmeci
,
M. R.
, and
Wan
,
K.
,
2010
, “
Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles
,”
J. Appl. Phys.
,
107
(
2
), p.
026104
.10.1063/1.3294960
6.
Yamamoto
,
M.
,
Pierre-Louis
,
O.
,
Huang
,
J.
,
Fuhrer
,
M. S.
,
Einstein
,
T.
, and
Cullen
,
W. G.
,
2012
, “
Princess and the Pea at the Nanoscale: Wrinkling and Unbinding of Graphene on Nanoparticles
,”
Phys. Rev. X
,
2
(
4
), p.
041018
.10.1103/PhysRevX.2.041018
7.
Pamp
,
A.
, and
Adams
,
G. G.
, “
Effect of Adhesion on Wafer Separation Due to Trapped Particles
,”
ASME/STLE 2007 International Joint Tribology Conference
, San Diego, CA, October 22–24, ASME Paper No. IJTC2007-44157, pp.
809
811
.
8.
Wan
,
K.-T.
, and
Mai
,
Y. W.
,
1995
, “
Fracture Mechanics of a Shaft-Loaded Blister of Thin Flexible Membrane on Rigid Substrate
,”
Int. J. Fract.
,
74
, pp.
181
197
.10.1007/BF00036264
9.
Komaragiri
,
U.
,
Begley
,
M. R.
, and
Simmonds
,
J. G.
,
2005
, “
The Mechanical Response of Freestanding Circular Elastic Films Under Point and Pressure Loads
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
203
212
.10.1115/1.1827246
10.
Su
,
C. Y.
,
Tsao
,
S.
,
Huang
,
L. Y.
, and
Hu
,
C. T.
,
2010
, “
Distinguish Various Types of Defects in Bonded Wafer Pairs With the Dynamic Blade Insertion Method
,”
J. Electrochem. Soc.
,
157
, pp.
H792
H795
.10.1149/1.3442794
11.
Bollmann
,
D.
,
Landesberger
,
C.
,
Ramm
,
P.
, and
Haberger
,
K.
,
1996
, “
Analysis of Wafer Bonding by Infrared Transmission
,”
Jpn. J. Appl. Phys.
, Part 1,
35
, pp.
3807
3809
.10.1143/JJAP.35.3807
12.
Horn
,
G.
,
Mackin
,
T. J.
, and
Lesniak
,
J.
,
2005
, “
Trapped Particle Detection in Bonded Semiconductors Using Gray-Field Photoelastic Imaging
,”
Exp. Mech.
,
45
(
5
), pp.
457
466
.10.1007/BF02427995
13.
Horn
,
G.
,
Mackin
,
T.
,
Lesniak
,
J.
, and
Boyce
,
B.
,
2004
, “
A New Approach for Detecting Defects in Bonded MEMS Devices
,”
Exp. Tech.
,
28
(
5
), pp.
19
22
.10.1111/j.1747-1567.2004.tb00181.x
14.
Scarpa
,
F.
,
Adhikari
,
S.
,
Gil
,
A. J.
, and
Remillat
,
C.
,
2010
, “
The Bending of Single Layer Graphene Sheets: The Lattice Versus Continuum Approach
,”
Nanotechnology
,
21
(
12
), p.
125702
.10.1088/0957-4484/21/12/125702
15.
Duan
,
W. H.
, and
Wang
,
C. M.
,
2009
, “
Nonlinear Bending and Stretching of a Circular Graphene Sheet Under a Central Point Load
,”
Nanotechnology
,
20
(
7
), p.
075702
.10.1088/0957-4484/20/7/075702
16.
Majidi
,
C.
, and
Adams
,
G. G.
,
2009
, “
A Simplified Formulation of Adhesion Problems With Elastic Plates
,”
Proc. R. Soc. London, Ser. A
,
465
(
2107
), pp.
2217
2230
.10.1098/rspa.2009.0060
17.
Majidi
,
C.
, and
Adams
,
G. G.
,
2010
, “
Adhesion and Delamination Boundary Conditions for Elastic Plates With Arbitrary Contact Shape
,”
Mech. Res. Commun.
,
37
(
2
), pp.
214
218
.10.1016/j.mechrescom.2010.01.002
18.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells II
,
McGraw-Hill
,
New York
.
19.
Mansfield
,
E. H.
,
1964
,
The Bending and Stretching of Plates
,
Pergamon
,
New York
.
20.
Adams
,
G. G.
,
1993
, “
Elastic Wrinkling of a Tensioned Circular Plate Using von Kármán Plate Theory
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
520
525
.10.1115/1.2900824
You do not currently have access to this content.