Coarse-grained molecular dynamics simulations have been performed to investigate the tensile behavior of CNT films. It is found that CNT entanglements greatly degrade the tensile load-bearing capability of CNT films. The effect of twisting on the tensile behavior of CNT fibers spun from CNT films has also been investigated. Results indicate that twisting can make either positive or negative contributions to the mechanical properties of the film, depending on the microstructure. The structural and energy evolution of CNT films and fibers, as well as the stress distributions of CNTs which cannot be easily determined experimentally, have been illustrated. This study provides an effective means of revealing the structure/property relationships of CNT films/fibers, which are essential in designing high performance CNT fibers.

References

References
1.
Chae
,
H. G.
, and
Kumar
,
S.
,
2008
, “
Making Strong Fibers
,”
Science
,
319
, pp.
908
909
.10.1126/science.1153911
2.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
de Heer
,
W. A.
,
2002
, “
Carbon Nanotubes—The Route Toward Applications
,”
Science
,
297
, pp.
787
792
.10.1126/science.1060928
3.
Lu
,
W. B.
,
Zu
,
M.
,
Byun
,
J. H.
,
Kim
,
B. S.
, and
Chou
,
T. W.
,
2012
, “
State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges
,”
Adv. Mater.
,
24
, pp.
1805
1833
.10.1002/adma.201104672
4.
Vigolo
,
B.
,
Penicaud
,
A.
,
Coulon
,
C.
,
Sauder
,
C.
,
Pailler
,
R.
,
Journet
,
C.
,
Bernier
,
P.
, and
Poulin
,
P.
,
2000
, “
Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes
,”
Science
,
290
, pp.
1331
1334
.10.1126/science.290.5495.1331
5.
Dalton
,
A. B.
,
Collins
,
S.
,
Munoz
,
E.
,
Razal
,
J. M.
,
Ebron
,
V. H.
,
Ferraris
,
J. P.
,
Coleman
,
J. N.
,
Kim
,
B. G.
, and
Baughman
,
R. H.
,
2003
, “
Super-Tough Carbon-Nanotube Fibres
,”
Nature
,
423
, p.
703
.10.1038/423703a
6.
Jiang
,
K. L.
,
Li
,
Q. Q.
, and
Fan
, S. S., “
Spinning Continuous Carbon Nanotube Yarns
,”
Nature
,
419
, pp.
801
802
.10.1038/419801a
7.
Zhang
,
M.
,
Atkinson
,
K. R.
, and
Baughman
,
R. H.
,
2004
, “
Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology
,”
Science
,
204
, pp.
1358
1361
.10.1126/science.1104276
8.
Zhang
,
X. F.
,
Li
,
Q. W.
,
Holesinger
,
T. G.
,
Arendt
,
P. N.
,
Huang
,
J. Y.
,
Kirven
,
P. D.
,
Clapp
,
T. G.
,
DePaula
,
R. F.
,
Liao
,
X. Z.
,
Zhao
,
Y. H.
,
Zheng
,
L. X.
,
Peterson
,
D. E.
, and
Zhu
,
Y. T.
,
2007
, “
Ultrastrong, Stiff, and Lightweight Carbon-Nanotube Fibers
,”
Adv. Mater.
,
19
, pp.
4198
4201
.10.1002/adma.200700776
9.
Li
,
Y. L.
,
Kinloch
,
I. A.
, and
Windle
,
A. H.
,
2004
, “
Direct Spinning of Carbon Nanotube Fibers From Chemical Vapor Deposition Synthesis
,”
Science
,
304
, pp.
276
278
.10.1126/science.1094982
10.
Zhong
,
X. H.
,
Li
,
Y. L.
,
Liu
,
Y. K.
,
Qiao
,
X. H.
,
Feng
,
F.
,
Liang
,
J.
,
Jin
,
J.
,
Zhu
,
L.
,
Hou
,
F.
, and
Li
,
J. Y.
,
2010
, “
Continuous Multilayered Carbon Nanotube Yarns
,”
Adv. Mater.
,
22
, pp.
692
696
.10.1002/adma.200902943
11.
Zhang
,
M.
,
Fang
,
S. L.
,
Zakhidov
,
A. A.
,
Lee
,
S. B.
,
Aliev
,
A. E.
,
Williams
,
C. D.
,
Atkinson
,
K. R.
, and
Baughman
,
R. H.
,
2005
, “
Strong, Transparent, Multifunctional, Carbon Nanotube Sheets
,”
Science
,
309
, pp.
1215
1219
.10.1126/science.1115311
12.
Zhu
,
C.
,
Cheng
,
C.
,
He
,
Y. H.
,
Wang
,
L.
,
Wong
,
T. L.
,
Fung
,
K. K.
, and
Wang
,
N.
,
2011
, “
A Self-Entanglement Mechanism for Continuous Pulling of Carbon Nanotube Yarns
,”
Carbon
,
49
, pp.
4996
5001
.10.1016/j.carbon.2011.07.014
13.
Miao
,
M. H.
,
McDonnell
,
J.
,
Vuckovic
,
L.
, and
Hawkins
,
S. C.
,
2010
, “
Poisson's Ratio and Porosity of Carbon Nanotube Dry-Spun Yarns
,”
Carbon
,
48
, pp.
2802
2811
.10.1016/j.carbon.2010.04.009
14.
Di
,
J. T.
,
Hu
,
D. M.
,
Chen
,
H. Y.
,
Yong
,
Z. Z.
,
Chen
,
M. H.
,
Feng
,
Z. H.
,
Zhu
,
Y. T.
, and
Li
,
Q. W.
,
2012
, “
Ultrastrong, Foldable, and Highly Conductive Carbon Nanotube Film
,”
ACS Nano
,
6
, pp.
5457
5464
.10.1021/nn301321j
15.
Pohls
,
J. H.
,
Johnson
,
M. B.
,
White
,
M. A.
,
Malik
,
R.
,
Ruff
,
B.
,
Jayasinghe
,
C.
,
Schulz
,
M. J.
, and
Shanov
,
V.
,
2012
, “
Physical Properties of Carbon Nanotube Sheets Drawn From Nanotube Arrays
,”
Carbon
,
50
, pp.
4175
4183
.10.1016/j.carbon.2012.04.067
16.
Koziol
,
K.
,
Vilatela
,
J.
,
Moisala
,
A.
,
Motta
,
M.
,
Cunniff
,
P.
,
Sennett
,
M.
, and
Windle
,
A.
,
2007
, “
High-Performance Carbon Nanotube Fiber
,”
Science
,
318
, pp.
1892
1895
.10.1126/science.1147635
17.
Wu
,
A. S.
,
Nie
,
X.
,
Hudspeth
,
M. C.
,
Chen
,
W. W.
,
Chou
,
T. W.
,
Lashmore
,
D. S.
,
Schauer
,
M. W.
,
Tolle
,
E.
, and
Rioux
,
J.
,
2012
, “
Strain Rate-Dependent Tensile Properties and Dynamic Electromechanical Response of Carbon Nanotube Fibers
,”
Carbon
,
50
, pp.
3876
3881
.10.1016/j.carbon.2012.04.031
18.
Wu
,
A. S.
,
Chou
,
T. W.
,
Gillespie
,
J. W.
,
Lashmore
,
D. S.
, and
Rioux
,
J.
,
2012
, “
Electromechanical Response and Failure Behaviour of Aerogel-Spun Carbon Nanotube Fibres Under Tensile Loading
,”
J. Mater. Chem.
,
22
, pp.
6792
6798
.10.1039/c2jm15869h
19.
Deng
,
F.
,
Lu
,
W. B.
,
Zhao
,
H. B.
,
Zhu
,
Y. T.
,
Kim
,
B. S.
, and
Chou
,
T. W.
,
2011
, “
The Properties of Dry-Spun Carbon Nanotube Fibers and Their Interfacial Shear Strength in an Epoxy Composite
,”
Carbon
,
49
, pp.
1752
1757
.10.1016/j.carbon.2010.12.061
20.
Zu
,
M.
,
Li
,
Q. W.
,
Zhu
,
Y. T.
,
Dey
,
M.
,
Wang
,
G. J.
,
Lu
,
W. B.
,
Deitzel
,
J. M.
,
Gillespie
,
J. W.
,
Byun
,
J. H.
, and
Chou
,
T. W.
,
2012
, “
The Effective Interfacial Shear Strength of Carbon Nanotube Fibers in an Epoxy Matrix Characterized by a Microdroplet Test
,”
Carbon
,
50
, pp.
1271
1279
.10.1016/j.carbon.2011.10.047
21.
Zu
,
M.
,
Lu
,
W. B.
,
Li
,
Q. W.
,
Zhu
,
Y. T.
,
Wang
,
G. J.
, and
Chou
,
T. W.
,
2012
, “
Characterization of Carbon Nanotube Fiber Compressive Properties Using Tensile Recoil Measurement
,”
ACS Nano
,
6
, pp.
4288
4297
.10.1021/nn300857d
22.
Beyerlein
,
I. J.
,
Porwal
,
P. K.
,
Zhu
,
Y. T.
,
Hu
,
K.
, and
Xu
,
X. F.
,
2009
, “
Scale and Twist Effects on the Strength of Nanostructured Yarns and Reinforced Composites
,”
Nanotechnology
,
20
, p.
485702
.10.1088/0957-4484/20/48/485702
23.
Vilatela
,
J. J.
,
Elliott
,
J. A.
, and
Windle
,
A. H.
,
2011
, “
A Model for the Strength of Yarn-Like Carbon Nanotube Fibers
,”
ACS Nano
,
5
, pp.
1921
1927
.10.1021/nn102925a
24.
Liu
,
X.
,
Lu
,
W. B.
,
Ayala
,
O. M.
,
Wang
,
L. P.
,
Karlsson
,
A. M.
,
Yang
,
Q. S.
, and
Chou
,
T. W.
,
2013
, “
Microstructural Evolution of Carbon Nanotube Fibers: Deformation and Strength Mechanism
,”
Nanoscale
,
5
(5), pp. 2002–2008.10.1039/c3nr32681k
25.
Buehler
,
M. J.
,
2006
, “
Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self-Assembly, Self-Folding, and Fracture
,”
J. Mater. Res.
,
21
, pp.
2855
2869
.10.1557/jmr.2006.0347
26.
Cranford
,
S. W.
, and
Buehler
,
M. J.
,
2010
, “
In Silico Assembly and Nanomechanical Characterization of Carbon Nanotube Buckypaper
,”
Nanotechnology
,
21
, p.
265706
.10.1088/0957-4484/21/26/265706
27.
Xie
,
B.
,
Liu
,
Y. L.
,
Ding
,
Y. T.
,
Zheng
,
Q. S.
, and
Xu
,
Z. P.
,
2001
, “
Mechanics of Carbon Nanotube Networks: Microstructural Evolution and Optimal Design
,”
Soft Matter
,
7
, pp.
10039
10047
.10.1039/c1sm06034a
28.
Li
,
Y.
, and
Kroger
,
M.
,
2012
, “
A Theoretical Evaluation of the Effects of Carbon Nanotube Entanglement and Bundling on the Structural and Mechanical Properties of Buckypaper
,”
Carbon
,
50
, pp.
1793
1806
.10.1016/j.carbon.2011.12.027
29.
Li
,
Y.
, and
Kroger
,
M.
,
2012
, “
Viscoelasticity of Carbon Nanotube Buckypaper: Zipping–Unzipping Mechanism and Entanglement Effects
,”
Soft Matter
,
8
, pp.
7822
7830
.10.1039/c2sm25561h
30.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
31.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Molec. Graphics
,
14
, pp.
33
38
.10.1016/0263-7855(96)00018-5
32.
Yu
,
M.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
,
2000
, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
,
84
, pp.
5552
5555
.10.1103/PhysRevLett.84.5552
33.
Sun
,
G. Z.
,
Zheng
,
L. X.
,
Zhou
,
J. Y.
,
Zhang
,
Y. N.
,
Zhan
,
Z. Y.
, and
Pang
,
J. H. L.
,
2012
, “
Load-Transfer Efficiency and Mechanical Reliability of Carbon Nanotube Fibers Under Low Strain Rates
,”
Int. J. Plasticity
,
40
, pp.
56
64
.10.1016/j.ijplas.2012.07.003
34.
Min
,
J.
,
Cai
,
J. Y.
,
Sridhar
,
M.
,
Easton
,
C. D.
,
Gengenbach
,
T. R.
,
McDonnell
,
J.
,
Humphries
,
W.
, and
Lucas
,
S.
,
2013
, “
High Performance Carbon Nanotube Spun Yarns From a Crosslinked Network
,”
Carbon
,
52
, pp.
520
527
.10.1016/j.carbon.2012.10.004
35.
Zhang
,
Y. N.
,
Zheng
,
L. X.
,
Sun
,
G. Z.
,
Zhan
,
Z. Y.
, and
Liao
,
K.
,
2012
, “
Failure Mechanisms of Carbon Nanotube Fibers Under Different Strain Rates
,”
Carbon
,
50
, pp.
2887
2893
.10.1016/j.carbon.2012.02.057
36.
Lu
,
Q.
, and
Bhattacharya
,
B.
,
2005
, “
Effect of Randomly Occurring Stone–Wales Defects on Mechanical Properties of Carbon Nanotubes Using Atomistic Simulation
,”
Nanotechnology
,
16
, pp.
555
566
.10.1088/0957-4484/16/4/037
37.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Chen
,
Y. L.
,
Jiang
,
H.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2008
, “
Mechanical Properties of Functionalized Carbon Nanotubes
,”
Nanotechnology
,
19
, p.
395702
.10.1088/0957-4484/19/39/395702
You do not currently have access to this content.