Irwin's model on plastic zone at the crack tip is discussed in many fracture mechanics textbooks. However, we found in Irwin's model that the internal resultant force on the crack plane and the one applied in remote field are not strictly balanced. This imbalance leads to the error in the scenario of small scale yielding, and an improper finite plastic zone size (PZS) is predicted when the remote stress approaches the yielding strength. In this paper, an improved model is developed through surrendering some main assumptions used in Irwin's model and an infinite PZS is then predicted as the remote stress goes up close to yielding strength, which implies that this estimation can be applied to situations with large scale yielding. In small scale yielding cases, the new estimation of PZS agrees well with finite element simulation results. In addition, a more accurate quantitative relation between the PZS and the effective stress intensity factor is derived, which might help characterize fracture behaviors in engineering applications.

References

References
1.
Griffith
,
A. A.
,
1921
, “
The Phenomenon of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
,
221
, pp.
163
198
.10.1098/rsta.1921.0006
2.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
, pp.
361
364
.
3.
Wells
,
1963
, “
Application of Fracture Mechanics At and Beyond General Yielding
,”
Br. Weld. J.
,
10
, pp.
563
570
.
4.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.10.1115/1.3601206
5.
Broberg
,
K. B.
,
1968
, “
Critical Review of Some Theories in Fracture Mechanics
,”
Int. J. Fract.
,
4
(
1
), pp.
11
19
.10.1007/BF00189139
6.
Cotterell
,
B.
, and
Reddel
,
J. K.
,
1977
, “
Essential Work of Plane Stress Ductile Fracture
,”
Int. J. Fract.
,
13
(
3
), pp.
267
277
.10.1007/BF00040143
7.
Turner
,
C. E.
,
1990
, “
A Re-Assessment of the Ductile Tearing Resistance, Part I and II
,”
D.
Firrao
, ed.,
ECF 8—Fracture Behavior and Design of Materials and Structures: Proceedings of the 8th European Conference on Fracture
, Torino, Italy, October 1–5, Vol. II, EMAS, Warrington,
UK
, pp.
933
949
and 951–968.
8.
Turner
,
C. E.
, and
Kolednik
,
O.
,
1994
, “
Micro and Macro Approach to the Energy Dissipation Rate Model of Stable Ductile Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
9
), pp.
1089
1107
.10.1111/j.1460-2695.1994.tb00837.x
9.
Bian
,
L. C.
, and
Kim
,
K. S.
,
2004
, “
The Minimum Plastic Zone Radius Criterion for Crack Initiation Direction Applied to Surface Cracks and Through-Cracks Under Mixed Mode Loading
,”
Int. J. Fatigue
,
26
(
11
), pp.
1169
1178
.10.1016/j.ijfatigue.2004.04.006
10.
Golos
,
K.
, and
Wasiluk
,
B.
,
2000
, “
Role of Plastic Zone in Crack Growth Direction Criterion Under Mixed Mode Loading
,”
Int. J. Fract.
,
102
(
4
), pp.
341
353
.10.1023/A:1007663728926
11.
Khan
,
S.M.A.
, and
Khraisheh
,
M. K.
,
2000
, “
Analysis of Mixed Mode Crack Initiation Angles Under Various Loading Conditions
,”
Eng. Fract. Mech.
,
67
(
5
), pp.
397
419
.10.1016/S0013-7944(00)00068-0
12.
Khan
,
S.M.A.
and
Khraisheh
,
M. K.
,
2004
, “
A New Criterion for Mixed Mode Fracture Initiation Based on the Crack Tip Plastic Core Region
,”
Int. J. Plasticity
,
20
(
1
), pp.
55
84
.10.1016/S0749-6419(03)00011-1
13.
Brown
,
M. W.
,
de los Rios
,
E. R.
,
Miller
,
J. K.
,
1988
, “
A Critical Comparison of Proposed Parameters for High-Strain Fatigue Crack Growth
,”
ASTM Spec. Tech. Publ.
,
924
, pp.
233
259
.
14.
Du
,
Y.
,
Patki
,
A.
, and
Patterson
,
E.
,
2011
, “
Monitoring Crack Tip Plastic Zone Size During Fatigue Loading
,”
Proceedings of the 2010 Annual Conference on Experimental and Applied Mechanics
,
17
, pp.
569
573
.10.1007/978-1-4419-9792-0_83
15.
McClung
,
R. C.
,
1991
, “
Crack Closure and Plastic Zone Sizes in Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
4
), pp.
455
468
.10.1111/j.1460-2695.1991.tb00674.x
16.
Wang
,
G. S.
,
1993
, “
The Plasticity Aspect of Fatigue Crack Growth
,”
Eng. Fract. Mech.
,
46
(
6
), pp.
909
930
.10.1016/0013-7944(93)90144-H
17.
Barthelat
,
F.
, and
Rabiei
,
R.
,
2011
, “
Toughness Amplification in Natural Composites
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
829
840
.10.1016/j.jmps.2011.01.001
18.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Lambropoulos
,
J. C.
,
1983
, “
Continuum Theory of Dilatant Transformation Toughening in Ceramics
,”
Int. J. Solids Struct.
,
19
(
4
), pp.
337
355
.10.1016/0020-7683(83)90031-8
19.
Gao
,
H.
,
Ji
,
B.
,
Buehler
,
M. J.
, and
Yao
,
H.
,
2004
, “
Flaw Tolerant Bulk and Surface Nanostructures of Biological Systems
,”
Mech. Chem. Biosyst.
,
1
(1), pp.
37
52
.10.3970/mcb.2004.001.037
20.
Qin
,
Z.
, and
Buehler
,
M. J.
,
2011
, “
Flaw Tolerance of Nuclear Intermediate Filament Lamina Under Extreme Mechanical Deformation
,”
ACS Nano
,
5
(
4
), pp.
3034
3042
.10.1021/nn200107u
21.
Banks
,
T. M.
, and
Garlick
,
A.
,
1984
, “
The Form of Crack Tip Plastic Zones
,”
Eng. Fract. Mech.
,
19
(
3
), pp.
571
581
.10.1016/0013-7944(84)90012-2
22.
Benrahou
,
K. H.
,
Benguediab
,
M.
,
Belhouari
,
M.
,
Nait-Abdelaziz
,
M.
, and
Imad
,
A.
,
2007
, “
Estimation of the Plastic Zone by Finite Element Method Under Mixed Mode (I and II) Loading
,”
Comp. Mater. Sci.
,
38
(
4
), pp.
595
601
.10.1016/j.commatsci.2006.04.001
23.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
106
.10.1016/0022-5096(60)90013-2
24.
Irwin
,
G. R.
,
1960
, “
Plastic Zone Near a Crack and Fracture Toughness
,”
Proceedings of the 7th Sagamore Ordnance Materials Research Conference
,
Racquette Lake, NY
, August 16–19, pp.
63
78
.
25.
Barenblatt
,
G.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
26.
Dodds
,
R. H.
,
Anderson
,
T. L.
, and
Kirk
,
M. T.
,
1991
, “
A Framework to Correlate a/W Ratio Effects on Elastic-Plastic Fracture Toughness (JC)
,”
Int. J. Fract.
,
48
(
1
), pp.
1
22
.10.1007/BF00012499
27.
Hui
,
C. Y.
,
Jagota
,
A.
,
Bennison
,
S. J.
, and
Londono
,
J. D.
,
2003
, “
Crack Blunting and the Strength of Soft Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
459
(
2034
), pp.
1489
1516
.10.1098/rspa.2002.1057
28.
McMeeking
,
R. M.
,
1977
, “
Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic Materials and Implications for Fracture
,”
J. Mech. Phys. Solids
,
25
(
5
), pp.
357
381
.10.1016/0022-5096(77)90003-5
29.
Turon
,
A.
,
Dávila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
.10.1016/j.engfracmech.2006.08.025
30.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics: Fundamentals and Applications
,
2nd ed.
,
CRC Press
,
Boca Raton
, FL.
31.
Abaqus
,
2005
,
ABAQUS Theory Manual and User's Manual, Version 6.2
,
Hibbit, Karlsson and Sorensen Inc.
,
Pawtucket, RI
.
You do not currently have access to this content.