In this paper, the stochastic stability of the three elastically connected Euler beams on elastic foundation is studied. The model is given as three coupled oscillators. Stochastic stability conditions are expressed by the Lyapunov exponent and moment Lyapunov exponents. It is determined that the new set of transformation for getting Ito differential equations can be applied for any system of three coupled oscillators. The method of regular perturbation is used to determine the asymptotic expressions for these exponents in the presence of small intensity noises. Analytical results are presented for the almost sure and moment stability of a stochastic dynamical system. The results are applied to study the moment stability of the complex structure with influence of the white noise excitation due to the axial compressive stochastic load.

References

References
1.
Hyer
,
M. W.
,
Anderson
,
W. J.
, and
Scott
,
R. A.
,
1976
, “
Non-Linear Vibrations of Three-Layer Beams With Viscoelastic Cores. I. Theory
,”
J. Sound Vib.
,
46
(
1
), pp.
121
136
.10.1016/0022-460X(76)90822-1
2.
Hyer
,
M. W.
,
Anderson
,
W. J.
, and
Scott
,
R. A.
,
1978
, “
Non-Linear Vibrations of Three-Layer Beams With Viscoelastic Cores. II. Experiment
,”
J. Sound Vib.
,
61
(
1
), pp.
25
30
.10.1016/0022-460X(78)90038-X
3.
Li
,
J.
,
Chen
,
Y.
, and
Hua
,
H.
,
2008
, “
Exact Dynamic Stiffness Matrix of a Timoshenko Three-Beam System
,”
Int. J. Mech. Sci.
,
50
, pp.
1023
1034
.10.1016/j.ijmecsci.2008.02.009
4.
Kelly
,
G. S.
, and
Srinivas
,
S.
,
2009
, “
Free Vibrations of Elastically Connected Stretched Beams
,”
J. Sound Vib.
,
326
, pp.
883
893
.10.1016/j.jsv.2009.06.004
5.
Jacques
,
N.
,
Daya
,
E. M.
, and
Potier-Ferry
,
M.
,
2010
, “
Nonlinear Vibration of Viscoelastic Sandwich Beams by the Harmonic Balance and Finite Element Methods
,”
J. Sound Vib.
,
329
(
20
), pp.
4251
4265
.10.1016/j.jsv.2010.04.021
6.
Stojanović
,
V.
,
Kozić
,
P.
, and
Janevski
,
G.
,
2013
, “
Exact Closed–Form Solutions for the Natural Frequencies and Stability of Elastically Connected Multiple Beam System Using Timoshenko and High Order Shear Deformation Theory
”,
J. Sound Vib.
,
332
, pp.
563
576
.10.1016/j.jsv.2012.09.005
7.
Matsunaga
,
H.
,
1996
, “
Buckling Instabilities of Thick Elastic Beams Subjected to Axial Stresses
,”
Comput. Struct.
,
59
, pp.
859
868
.10.1016/0045-7949(95)00306-1
8.
Faruk
,
F. C.
,
2009
, “
Dynamic Analysis of Beams on Viscoelastic Foundation
,”
Eur. J. of Mech. A/Solids
,
28
, pp.
469
476
.10.1016/j.euromechsol.2008.08.001
9.
Ma
,
X.
,
Butterworth
,
J. W.
, and
Clifton
G. C.
,
2009
, “
Static Analysis of an Infinite Beam Resting on a Tensionless Pasternak Foundation
,”
Eur. J. Mech. A/Solids
,
28
, pp.
697
703
.10.1016/j.euromechsol.2009.03.003
10.
Zhang
,
Q. Y.
,
Lu
,
Y.
,
Wang
,
L. S.
, and
Liu
,
X.
,
2008
, “
Vibration and Buckling of a Double–Beam System Under Compressive Axial Loading
,”
J. Sound Vib.
,
318
, pp.
341
352
.10.1016/j.jsv.2008.03.055
11.
Arnold
,
L.
,
Doyle
,
M. M.
, and
Sri Namachchivaya
,
N.
,
1997
, “
Small Noise Expansion of Moment Lyapunov Exponents for Two-Dimensional Systems
,”
Dyn. Stab. Syst.
,
12
(
3
), pp.
187
211
.10.1080/02681119708806244
12.
Khasminskii
,
R.
, and
Moshchuk
,
N.
,
1998
, “
Moment Lyapunov Exponent and Stability Index for Linear Conservative System With Small Random Perturbation
,”
SIAM J. Appl. Math.
,
58
(
1
), pp.
245
256
.10.1137/S003613999529589X
13.
Kozić
,
P.
,
Janevski
,
G.
, and
Pavlović
,
R.
,
2010
, “
Moment Lyapunov Exponents and Stochastic Stability of a Double-Beam System Under Compressive Axial Loading
,”
Int. J. Solids Struct.
,
47
, pp.
1435
1442
.10.1016/j.ijsolstr.2010.02.005
14.
Xie
,
W.-C.
,
2001
, “
Moment Lyapunov Exponents of a Two-Dimensional System Under Real-Noise Excitation
,”
J. Sound Vib.
,
239
(
1
), pp.
139
155
.10.1006/jsvi.2000.3211
15.
Sri Namachchivaya
,
N.
, and
Van Roessel
,
H. J.
,
2004
, “
Stochastic Stability of Coupled Oscillators in Resonance: A Perturbation Approach
,”
ASME J. Appl. Mech.
,
71
, pp.
759
767
.10.1115/1.1795813
16.
Sri Namachchivaya
,
N.
,
Van Roessel
,
H. J.
, and
Talwar
,
S.
,
1994
, “
Maximal Lyapunov Exponent and Almost–Sure Stability for Coupled Two-Degree of Freedom Stochastic Systems
,”
ASME J. Appl. Mech.
,
61
, pp.
446
452
.10.1115/1.2901465
17.
Wedig
,
W.
,
1988
, “
Lyapunov Exponent of Stochastic Systems and Related Bifurcation Problem
,”
Stochastic Structural Dynamics—Progress in Theory and Applications
,
S. T.
Ariaratnam
,
G. I.
Schuëller
, and
I.
Elishakoff
, eds.,
Elsevier Applied Science
,
London
, pp.
315
327
.
18.
Ariaratnam
,
S. T.
,
Tam
,
D. S. F.
, and
Xie
,
W.-C.
,
1991
, “
Lyapunov Exponents and Stochastic Stability of Coupled Linear Systems Under White Noise Excitation
,”
Probab. Eng. Mech.
,
6–2
, pp.
51
56
.10.1016/0266-8920(91)90017-X
19.
Xie
,
W.-C.
,
2006
, “
Moment Lyapunov Exponents of a Two-Dimensional System Under Both Harmonic and White Noise Parametric Excitations
,”
J. Sound Vib.
,
289
, pp.
171
191
.10.1016/j.jsv.2005.02.001
You do not currently have access to this content.