One-dimensional wave propagation in granular flow has been investigated using a three-dimensional discrete element model (DEM). Cohesionless, dry, smooth, elastic, hard spheres are randomly distributed in a cylinder-piston system with initial granular temperature and solid fraction. Upon a sudden motion of the piston, subsequent wave propagation in granular materials between two ends of the cylinder is numerically simulated. The simulation results of wave speed normalized by the square root of granular temperature are found to be well correlated as a function of solid fraction. Comparison with several analytical works in the literature shows that the simulated wave speed is in good agreement with the wave speed calculated at the isentropic condition but is higher than that at the constant granular temperature condition. Finally the simulation result is employed to describe shock waves observed in the literature. It has been found that, when particles rapidly flow through an orifice, a shock is formed very near the location of the maximum granular temperature. It has also been observed that a shock can be formed even when the flow does not appear to be choked due to its low density upstream of the orifice.

References

References
1.
Campbell
,
C. S.
,
2002
, “
Granular Shear Flows at the Elastic Limit
,”
J. Fluid Mech.
,
465
, pp.
261
291
.10.1017/S002211200200109X
2.
Duffy
,
J.
, and
Mindlin
,
R.
,
1957
, “
Stress-Strain Relations and Vibrations of a Granular Medium
,”
J. Appl. Mech.
,
24
, pp.
585
593
.
3.
Goddard
,
J. D.
,
1990
, “
Nonlinear Elasticity and Pressure-Dependent Wave Speeds in Granular Media
,”
Proc. R. Soc.
,
430
, pp.
105
131
.10.1098/rspa.1990.0083
4.
Hoster
,
S. R.
, and
Brennen
,
C. E.
,
2005
, “
Pressure Wave Propagation in a Granular Bed
,”
Phys. Rev. E
,
72
, p.
031303
.10.1103/PhysRevE.72.031303
5.
Hoster
,
S. R.
, and
Brennen
,
C. E.
,
2005
, “
Pressure Wave Propagation in a Shaken Granular Bed
,”
Phys. Rev. E
,
72
, p.
031304
.10.1103/PhysRevE.72.031304
6.
Haff
,
P. K.
,
1983
, “
Grain Flow as a Fluid-Mechanical Phenomenon
,”
J. Fluid Mech.
,
134
, pp.
401
430
.10.1017/S0022112083003419
7.
Savage
,
S. B.
,
1988
, “
Streaming Motions in a Bed of Vibrationally Fluidized Dry Granular Material
,”
J. Fluid Mech.
194
, pp.
457
478
.10.1017/S0022112088003064
8.
Jenkins
,
J. T.
, and
Savage
,
S. B.
,
1983
, “
A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic, Spherical Particles
,”
J. Fluid Mech.
130
, pp.
187
202
.10.1017/S0022112083001044
9.
Ocone
,
R.
, and
Astarita
,
G.
,
1993
, “
A Pseudo-Thermodynamic Theory of Granular Flow Rheology
,”
J. Rheol.
,
37
, pp.
727
742
.10.1122/1.550392
10.
Ocone
,
R.
, and
Astarita
,
G.
,
1994
, “
On Waves of Particulate Phase Pressure in Granular Materials
,”
J. Rheol.
,
38
(
1
), pp.
129
139
.10.1122/1.550506
11.
Ocone
,
R.
, and
Astarita
,
G.
,
1995
, “
Compression and Rarefaction Waves in Granular Flow
,”
Powder Technol.
,
82
, pp.
231
237
.10.1016/0032-5910(94)02927-G
12.
Serna
,
S.
, and
Marquina
,
A.
,
2005
, “
Capturing Shock Waves in Inelastic Granular Gases
,”
J. Comput. Phys.
,
209
, pp.
787
795
.10.1016/j.jcp.2005.04.004
13.
Bougie
,
J.
,
Moon
,
S. J.
,
Swift
,
J. B.
, and
Swinney
,
H. L.
,
2002
, “
Shocks in Vertically Oscillated Granular Layers
”,
Phys. Rev. E
,
66
, p.
051301
.10.1103/PhysRevE.66.051301
14.
Huang
,
K.
,
Zhang
,
P.
,
Miao
,
G.
, and
Wei
,
R.
,
2006
, “
Dynamic Behaviors of Supersonic Granular Media Under Vertical Vibration
,”
Ultrasonics
,
44
, pp.
1487
1489
.10.1016/j.ultras.2006.05.211
15.
Ahn
,
H.
,
2007
, “
Computer Simulation of Rapid Granular Flow Through an Orifice
,”
J. Appl. Mech.
,
74
, pp.
111
118
.10.1115/1.2187529
16.
Walton
,
O. R.
,
1993
, “
Numerical Simulation of Inelastic, Frictional Particle-Particle Interactions
,”
Particulate Two-Phase Flow
,
M. C.
Roco
, ed.,
Butterworth-Heinemann, Boston
, pp.
884
911
.
17.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
,
140
, pp.
223
256
.10.1017/S0022112084000586
18.
Carnahan
,
N. F.
, and
Starling
,
K. E.
,
1969
, “
Equations of State for Non-Attracting Rigid Spheres
,”
J. Chem. Phys.
,
51
, pp.
635
636
.10.1063/1.1672048
19.
Ogawa
,
S.
,
Umemura
,
A.
, and
Oshima
,
N.
,
1980
, “
On the Equations of Fully Fluidized Granular Materials
,”
Z. Angew. Math. Phys.
,
31
, pp.
483
493
.10.1007/BF01590859
20.
Lun
,
C. K. K.
, and
Savage
,
S. B.
,
1986
, “
The Effects of an Impact Velocity Dependent Coefficient of Restitution on Stresses Developed by Sheared Granular Materials
,”
Acta Mech.
63
, pp.
15
44
.10.1007/BF01182538
21.
Ahn
,
H.
,
Basaranoglu
,
Z.
,
Yilmaz
,
M.
,
Bugutekin
,
A.
, and
Gul
,
M. Z.
,
2008
, “
Experimental Investigation of Granular Flow Through an Orifice
,”
Powder Technol.
,
186
, pp.
65
71
.10.1016/j.powtec.2007.11.001
You do not currently have access to this content.