A refined molecular life prediction scheme for single-walled carbon nanotubes (SWCNTs), taking into consideration C–C bond rotation and preexisting strain under mechanical loads, is proposed. The time-dependent fracture behavior of 12 different cases of zigzag (18,0) SWCNT, each embedded with either a single Stone–Wales (SW) defect of different types or two interacting or noninteracting defects, is studied under axially applied tensile load. It is shown that the patterns of atomistic crack propagation and fatigue lives of SWCNTs are influenced by the type and orientation of the SW defect(s), inter-defect distance, as well as the magnitude of externally applied stress. For SWCNTs with two SW defects, if the inter-defect distance is within the so called indifference length, defect-defect interaction does exist, and it has pronounced effects on diminishing the lives of the nanotubes. Also, the defect-defect interaction is stronger at shorter inter-defect distance, resulting in shorter fatigue lives.

References

1.
Wang
,
X.
,
Li
,
Q.
,
Xie
,
J.
,
Jin
,
Z.
,
Wang
,
J.
,
Li
,
Y.
,
Jiang
,
K.
, and
Fan
,
S.
,
2009
, “
Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates
,”
Nano Lett.
,
9
(
9
), pp.
3137
3141
.10.1021/nl901260b
2.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
(
6584
), pp.
678
680
.10.1038/381678a0
3.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
, pp.
637
640
.10.1126/science.287.5453.637
4.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1997
, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
,
8
, pp.
341
348
.10.1016/S0927-0256(97)00047-5
5.
Charlier
,
J. C.
,
2002
, “
Defects in Carbon Nanotubes
,”
Acc. Chem. Res.
,
35
(
12
), pp.
1063
1069
.10.1021/ar010166k
6.
Buongiorno Nardelli
,
M.
,
Fattebert
,
J. L.
,
Orlikowski
,
D.
,
Roland
,
C.
,
Zhao
,
Q.
, and
Bernholc
,
J.
,
2000
, “
Mechanical Properties, Defects and Electronic Behavior of Carbon Nanotubes
,”
Carbon
,
38
(
11–12
), pp.
1703
1711
.10.1016/S0008-6223(99)00291-2
7.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Chen
,
Y. L.
,
Jiang
,
H.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2008
, “
Mechanical Properties of Functionalized Carbon Nanotubes
,”
Nanotechnology
,
19
(
39
), p.
395702
.10.1088/0957-4484/19/39/395702
8.
Stone
,
A. J.
, and
Wales
,
D. J.
,
1986
, “
Theoretical Studies of Icosahedral C60 and Some Related Species
,”
Chem. Phys. Lett.
,
128
(
5–6
), pp.
501
503
.10.1016/0009-2614(86)80661-3
9.
Buongiorno Nardelli
,
M.
,
Yakobson
,
B. I.
, and
Bernholc
,
J.
,
1998
, “
Mechanism of Strain Release in Carbon Nanotubes
,”
Phys. Rev. B
,
57
(
8
), pp.
R4277
R4280
.10.1103/PhysRevB.57.R4277
10.
Lu
,
Q.
, and
Bhattacharya
,
B.
,
2005
, “
Effect of Randomly Occurring Stone–Wales Defects on Mechanical Properties of Carbon Nanotubes Using Atomistic Simulation
,”
Nanotechnology
,
16
, pp.
555
566
.10.1088/0957-4484/16/4/037
11.
Liu
,
L. Q.
, and
Wagner
,
H. D.
,
2007
, “
A Comparison of the Mechanical Strength and Stiffness of MWNT-PMMA and MWNT-Epoxy Nanocomposites
,”
Compos. Interfaces
,
14
(
4
), pp.
285
297
.10.1163/156855407780452904
12.
Barber
,
A. H.
,
Andrews
,
R.
,
Schadler
,
L. S.
, and
Wagner
,
H. D.
,
2005
, “
On the Tensile Strength Distribution of Multiwalled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
87
(
20
), p.
203106
.10.1063/1.2130713
13.
Barber
,
A. H.
,
Cohen
,
S. R.
, and
Wagner
,
H. D.
,
2003
, “
Measurement of Carbon Nanotube-Polymer Interfacial Strength
,”
Appl. Phys. Lett.
,
82
(
23
), pp.
4140
4142
.10.1063/1.1579568
14.
Zhao
,
Q.
,
Nardelli
,
M. B.
, and
Bernholc
,
J.
,
2002
, “
Ultimate Strength of Carbon Nanotubes: A Theoretical Study
,”
Phys. Rev. B
,
65
(
14
), p.
144105
.10.1103/PhysRevB.65.144105
15.
Li
,
F.
,
Cheng
,
H. M.
,
Bai
,
S.
,
Su
,
G.
, and
Dresselhaus
,
M. S.
,
2000
, “
Tensile Strength of Single-Walled Carbon Nanotubes Directly Measured From Their Macroscopic Ropes
,”
Appl. Phys. Lett.
,
77
(
20
), pp.
3161
3163
.10.1063/1.1324984
16.
Ajayan
,
P. M.
,
Schadler
,
L. S.
,
Giannaris
,
C.
, and
Rubio
,
A.
,
2000
, “
Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness
,”
Adv. Mater.
,
12
(
10
), pp.
750
753
.10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
17.
Zhurkov
,
S. N.
,
1965
, “
Kinetic Concept of the Strength of Solids
,”
Int. J. Fract. Mech.
,
1
, pp.
311
323
.
18.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
,
W. J.
, and
Gun'ko
,
Y. K.
,
2006
, “
Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites
,”
Carbon
,
44
(
9
), pp.
1624
1652
.10.1016/j.carbon.2006.02.038
19.
Liew
,
K. M.
,
Wong
,
C. H.
, and
Tan
,
M. J.
,
2006
, “
Tensile and Compressive Properties of Carbon Nanotube Bundles
,”
Acta Mater.
,
54
(
1
), pp.
225
231
.10.1016/j.actamat.2005.09.002
20.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Köpke
,
U.
,
Fiedler
,
B.
, and
Schulte
,
K.
,
2004
, “
Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,”
Compos. Sci. Technol.
,
64
(
15
), pp.
2363
2371
.10.1016/j.compscitech.2004.04.002
21.
Wichmann
,
M. H. G.
,
Schulte
,
K.
, and
Wagner
,
H. D.
,
2008
, “
On Nanocomposite Toughness
,”
Compos. Sci. Technol.
,
68
(
1
), pp.
329
331
.10.1016/j.compscitech.2007.06.027
22.
Xia
,
Z.
,
Riester
,
L.
,
Curtin
,
W. A.
,
Li
,
H.
,
Sheldon
,
B. W.
,
Liang
,
J.
,
Chang
,
B.
, and
Xu
,
J. M.
,
2004
, “
Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix Composites
,”
Acta Mater.
,
52
(
4
), pp.
931
944
.10.1016/j.actamat.2003.10.050
23.
Zhang
,
W.
,
Suhr
,
J.
, and
Koratkar
,
N. A.
,
2006
, “
Observation of High Buckling Stability in Carbon Nanotube Polymer Composites
,”
Adv. Mater.
,
18
(
4
), pp.
452
456
.10.1002/adma.200501777
24.
Suhr
,
J.
,
2007
, “
Visco-Elastic Properties of Aligned Multi-Walled Carbon Nanotube Blocks
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA, November 11–15,
ASME
Paper No. IMECE2007-42611, pp.
281
298
.10.1115/IMECE2007-42611
25.
Suhr
,
J.
, and
Koratkar
,
N.
,
2008
, “
Energy Dissipation in Carbon Nanotube Composites: A Review
,”
J. Mater. Sci.
,
43
(
13
), pp.
4370
4382
.10.1007/s10853-007-2440-x
26.
Suhr
,
J.
,
Zhang
,
W.
,
Ajayan
,
P. M.
, and
Koratkar
,
N. A.
,
2006
, “
Temperature-Activated Interfacial Friction Damping in Carbon Nanotube Polymer Composites
,”
Nano Lett.
,
6
(
2
), pp.
219
223
.10.1021/nl0521524
27.
Liew
,
K. M.
,
He
,
X. Q.
, and
Wong
,
C. H.
,
2004
, “
On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes Under Axial Tension Using Molecular Dynamics Simulation
,”
Acta Mater.
,
52
(
9
), pp.
2521
2527
.10.1016/j.actamat.2004.01.043
28.
Ren
,
Y.
,
Li
,
F.
,
Cheng
,
H.-M.
, and
Liao
,
K.
,
2003
, “
Tension-Tension Fatigue Behavior of Unidirectional Single-Walled Carbon Nanotube Reinforced Epoxy Composite
,”
Carbon
,
41
(
11
), pp.
2177
2179
.10.1016/S0008-6223(03)00248-3
29.
Xiao
,
T.
,
Ren
,
Y.
, and
Liao
,
K.
,
2004
, “
A Kinetic Model for Time-Dependent Fracture of Carbon Nanotubes
,”
Nano Lett.
,
4
(
6
), pp.
1139
1142
.10.1021/nl049731d
30.
Ren
,
Y.
,
Xiao
,
T.
, and
Liao
,
K.
,
2006
, “
Time-Dependent Fracture Behavior of Single-Walled Carbon Nanotubes With and Without Stone-Wales Defects
,”
Phys. Rev. B
,
74
(
4
), p.
045410
.10.1103/PhysRevB.74.045410
31.
Suhr
,
J.
,
Victor
,
P.
,
Sreekala
,
L. C. S.
,
Zhang
,
X.
,
Nalamasu
,
O.
, and
Ajayan
,
P. M.
,
2007
, “
Fatigue Resistance of Aligned Carbon Nanotube Arrays Under Cyclic Compression
,”
Nat. Nanotechnol.
,
2
(
7
), pp.
417
421
.10.1038/nnano.2007.186
32.
Zhang
,
W.
,
Picu
,
R. C.
, and
Koratkar
,
N.
,
2007
, “
Suppression of Fatigue Crack Growth in Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
91
(
19
), p.
193109
.10.1063/1.2809457
33.
Zhang
,
W.
,
Picu
,
R. C.
, and
Koratkar
,
N.
,
2008
, “
The Effect of Carbon Nanotube Dimensions and Dispersion on the Fatigue Behavior of Epoxy Nanocomposites
,”
Nanotechnology
,
19
(
28
), p.
285709
.10.1088/0957-4484/19/28/285709
34.
Grimmer
,
C.
, and
Dharan
,
C.
,
2008
, “
High-Cycle Fatigue of Hybrid Carbon Nanotube/Glass Fiber/Polymer Composites
,”
J. Mater. Sci.
,
43
(
13
), pp.
4487
4492
.10.1007/s10853-008-2651-9
35.
Ma
,
G.
,
Ren
,
Y.
,
Guo
,
J.
,
Xiao
,
T.
,
Li
,
F.
,
Cheng
,
H.
,
Zhou
,
Z.
, and
Liao
,
K.
,
2008
, “
How Long Can Single-Walled Carbon Nanotube Ropes Last Under Static or Dynamic Fatigue?
,”
Appl. Phys. Lett.
,
92
(
8
), p.
083105
.10.1063/1.2883940
36.
Ganß
,
M.
,
Satapathy
,
B. K.
,
Thunga
,
M.
,
Weidisch
,
R.
,
Pötschke
,
P.
, and
Jehnichen
,
D.
,
2008
, “
Structural Interpretations of Deformation and Fracture Behavior of Polypropylene/Multi-Walled Carbon Nanotube Composites
,”
Acta Mater.
,
56
(
10
), pp.
2247
2261
.10.1016/j.actamat.2008.01.010
37.
Huq
,
A. M. A.
,
Goh
,
K. L.
,
Zhou
,
Z. R.
, and
Liao
,
K.
,
2008
, “
On Defect Interactions in Axially Loaded Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
103
(
5
), p.
054306
.10.1063/1.2837835
38.
Huq
,
A. M. A.
,
Bhuiyan
,
A. K.
,
Liao
,
K.
, and
Goh
,
K. L.
,
2010
, “
Defect-Defect Interaction in Single-Walled Carbon Nanotubes Under Torsional Loading
,”
Int. J. Mod. Phys. B
,
24
(
10
), pp.
1215
1226
.10.1142/S021797921005510X
39.
Kelly
,
B. T.
,
1981
,
Physics of Graphite
,
Applied Science
,
London
.
40.
Xiao
,
T.
, and
Liao
,
K.
,
2002
, “
Nonlinear Elastic Properties of Carbon Nanotubes Subjected to Large Axial Deformations
,”
Phys. Rev. B
,
66
(
15
), p.
153407
.10.1103/PhysRevB.66.153407
41.
Xiao
,
T.
,
Ren
,
Y.
,
Ping
,
W.
, and
Liao
,
K.
,
2006
, “
Force-Strain Relation of Bundles of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
89
(
3
), p.
033116
.10.1063/1.2227987
You do not currently have access to this content.