This paper presents the derivation of a new boundary element formulation for plate bending problems. The Reissner's plate bending theory is employed. Unlike the conventional direct or indirect formulations, the proposed integral equation is based on minimizing the relevant energy functional. In doing so, variational methods are used. A collocation based series, similar to the one used in the indirect discrete boundary element method (BEM), is used to remove domain integrals. Hence, a fully boundary integral equation is formulated. The main advantage of the proposed formulation is production of a symmetric stiffness matrix similar to that obtained in the finite element method. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.

## References

1.
Jaswon
,
M. A.
, and
Symm
,
G. T.
,
1977
,
Integral Equation Methods in Potential Theory and Elastostatics
,
,
New York
.
2.
Antes
,
H.
,
1984
, “
On a Regular Boundary Integral Equation and a Modified Trefftz Method in Reissner’s Plate Theory
,”
Eng. Anal.
,
1
, pp.
149
153
.10.1016/0264-682X(84)90071-6
3.
Cho
,
H. A.
,
Chen
,
C. S.
, and
Golberg
,
M. A.
,
2006
, “
Some Comments on Mitigating the Ill-Conditioning of the Method of Fundamental Solutions
,”
Eng. Anal. Boundary Elem.
,
30
, pp.
405
410
.10.1016/j.enganabound.2006.01.001
4.
Fam
,
G. S. A.
, and
Rashed
,
Y. F.
,
2007
, “
Dipoles Formulation for the Method of Fundamental Solutions Applied to Potential Problems
,”
,
38
, pp.
1
8
5.
Mohareb
,
S. W.
, and
Rashed
,
Y. F.
,
2009
, “
A Dipole Method of Fundamental Solutions Applied to Reissner’s Plate Bending Theory
,”
Mech. Res. Commun.
36
, pp.
939
948
.10.1016/j.mechrescom.2009.08.005
6.
Mitic
,
P.
, and
Rashed
,
Y. F.
,
2007
, “
Potential Equation Solutions Using the Method of Fundamental Solutions With a Circular Line Source
,”
Proceedings of the International Conference on Boundary Element Methods (BEM/MEM 29)
, Ashurst, UK, June 4–6.
7.
Fam
,
G. S. A.
, and
Rashed
,
Y. F.
,
2009
, “
The Method of Fundamental Solutions Applied to 3D Elasticity Problems Using a Continuous Collocation Scheme
,”
Eng. Anal. Boundary Elem.
,
33
, pp.
330
341
.10.1016/j.enganabound.2008.07.002
8.
Crouch
,
S. L.
, and
Starfield
,
A. M.
,
1983
,
Boundary Element Methods in Solid Mechanics
,
Allen and Unwin
,
London
.
9.
Patton
,
V. Z.
, and
Perlin
,
P. I.
,
1981
,
Mathematical Methods of the Theory of Elasticity
, Vol. 2,
Mir
,
Moscow
.
10.
Tran-Cong
,
T.
,
Nguyen-Thien
,
T.
, and
Phan-Thien
,
N.
,
1996
, “
Boundary Element Method Based on New Second Kind Integral Equation Formulation
,”
Eng. Anal. Boundary Elem.
,
17
, pp.
313
320
.10.1016/S0955-7997(96)00032-X
11.
Rashed
,
Y. F.
,
2000
,
Boundary Element Formulations for Thick Plates, Topics in Engineering
, Vol. 35.,
WIT Press
,
Southampton, UK
.
12.
Rashed
,
Y. F.
,
,
M. H.
, and
Brebbia
,
C. A.
,
1997
, “
On the Evaluation of the Stresses in the BEM for Reissner Plate Bending Problems
,”
Appl. Math. Model.
,
21
, pp.
155
163
.10.1016/S0307-904X(97)00004-8
13.
Rashed
,
Y. F.
,
,
M. H.
, and
Brebbia
,
C. A.
,
1998
, “
Hyper-Singular Boundary Element Formulation for Reissner Plates
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2229
2249
.10.1016/S0020-7683(97)00188-1
14.
Brebbia
,
C. A.
, and
Butterfield
,
R.
,
1978
, “
The Formal Equivalence of the Direct and Indirect Boundary Element Methods
,”
Appl. Math. Model.
,
2
(
2
), pp.
132
134
.10.1016/0307-904X(78)90052-5
15.
Brebbia
,
C. A.
, and
Walker
,
S.
,
1980
,
Boundary Element Techniques in Engineering
,
Butterworths
,
London
.
16.
Kuhn
,
G.
,
Partheymüller
,
P.
, and
Haas
,
M.
,
2000
, “
Comparison of the Basic and the Discontinuity Formulation of the 3D-Dual Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
24
(
10
), pp.
777
788
.10.1016/S0955-7997(00)00060-6
17.
Perez-Gavilan
,
J. J.
, and
,
M. H.
,
2003
, “
Symmetric Galerkin BEM for Shear Deformable Plates
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
1661
1693
.10.1002/nme.734
18.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
,
1984
,
Boundary Element Techniques: Theory and Applications in Engineering
,
Springer-Verlag
,
Berlin
.
19.
Reddy
,
J. N.
,
1993
,
Introduction to the Finite Element Method
,
McGraw-Hill
,
New York
.
20.
Dym
,
C. L.
, and
Shamed
,
I. H.
,
1973
,
Solid Mechanics, a Variational Approach
,
McGraw-Hill
,
New York
.
21.
DeFigueiredo
,
T. G. B.
,
1991
A New Boundary Element Formulation in Engineering
(Lecture Notes in Engineering, Vol. 68),
Springer
,
New York
.
22.
Dumont
N. A.
,
1989
, “
The Hybrid Boundary Element Method: An Alliance Between Mechanical Consistency and Simplicity
,”
ASME Appl. Mech. Rev.
,
42
, pp.
S54
S63
.10.1115/1.3152408
23.
Dumont
N. A.
,
2003
, “
Variationally-Based, Hybrid Boundary Element Methods
,”
Comp. Assist. Mech. Eng. Sci.
,
10
, pp.
407
430
.
24.
Liu
,
Y. J.
,
Mukherjee
,
S.
,
Nishimura
,
N.
,
Schanz
,
M.
,
Ye
,
W.
,
,
A.
,
Pan
,
E.
,
Dumont
,
N. A.
,
Frangi
A.
, and
Saez
A.
,
2011
, “
Recent Advances and Emerging Applications of the Boundary Element Method
,”
ASME Appl. Mech. Rev.
,
64
(
5
), p.
030802
.10.1115/1.4005491
25.
Gaul
,
L.
,
Kogl
,
M.
, and
Wagner
,
M.
,
2003
,
Boundary Element Methods for Engineers and Scientists
,
Springer
,
New York
.
26.
Felippa
,
C. A.
,
2000
, “
Advanced Finite Element Methods for Solids, Plates and Shells Course Notes, Chapter 1: Overview
27.
Cheng
,
A. H.
, and
Cheng
D. T.
,
2005
, “
Heirtage and Early History of the Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
29
, pp.
268
302
.10.1016/j.enganabound.2004.12.001
28.
Vander Weeën
,
F.
,
1982
, “
Application of the Boundary Integral Equation Method to Reissner’s Plate Model
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1
10
.10.1002/nme.1620180102
29.
Barcellos
,
C. S.
, and
Silva
,
L. H. M.
,
1987
, “
A Boundary Element Formulation for Mindlin’s Plate Model
,” Proceedings of BETECH87: 3rd International Conference on Boundary Element Technology, Rio de Janeiro, June 2–4,
C. A.
Brebbia
and
W. S.
Venturini
, eds.,
Computational Mechanics Publications
,
Southampton, UK
.
30.
El-Zafrany
,
A.
,
,
S.
, and
Debbih
,
M.
,
1995
An Efficient Approach for Boundary Element Bending Analysis of Thin and Thick Plates,
Comput. Struct.
,
56
, pp.
565
576
.10.1016/0045-7949(94)00559-L
31.
Ribeiro
,
G. O.
, and
Venturini
,
W. S.
,
1998
, “
Elastoplastic Analysis of Reissner’s Plates Using the Boundary Element Method
,”
Boundary Element Method for Plate Bending Analysis
,
M. H.
, ed.,
Computational Mechanics Publications
,
Southampton, UK
, pp.
101
125
.
32.
Westphal
,
J. R. T.
,
Andrä
,
H.
, and
Schmack
,
E.
,
2001
, “
Some Fundamental Solutions for Kirchhoff, Reissner and Mindlin Plate and a Unified BEM Formulation
,”
Eng. Anal. Boundary Elem.
,
25
, pp.
129
139
.10.1016/S0955-7997(00)00049-7
33.
Marczak
,
R. J.
, and
Creus
,
G. J.
,
2002
, “
Direct Evaluation of Singular Integrals in Boundary Element Analysis of Thick Plates
,”
Eng. Anal. Boundary Elem.
,
26
, pp.
653
665
.10.1016/S0955-7997(02)00029-2
34.
Fernandes
,
G. R.
, and
Konda
D. H.
,
2008
, “
A BEM Formulation Based on Reissner’s Theory to Perform Simple Bending Analysis of Plates Reinforced by Rectangular Beams
,”
Comput. Mech.
,
42
, pp.
671
683
.10.1007/s00466-008-0266-2
35.
Reissner
,
E.
,
1947
, “
On the Bending of Elastic Plates
,”
Q. Appl. Math.
,
5
, pp.
55
68
.
36.
Karam
,
V. J.
, and
Telles
,
J. C. F.
,
1988
, “
On Boundary Elements for Reissner’s Plate Theory
,”
Eng. Anal.
,
5
, pp.
21
27
.10.1016/0264-682X(88)90029-9
37.
Rashed
,
Y. F.
, and
Brebbia
,
C. A.
, eds.,
2003
,
Transformation of Domain Effects to the Boundary
,
WIT Press
,
Southampton, UK
.
38.
Zienkiewicz
,
O. C.
,
1977
,
The Finite Element Method
,
McGraw-Hill
,
New York
.
39.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds.,
1965
,
Handbook of Mathematical Functions
,
Dover
,
New York
.