This paper presents a study of fracture in nickel using multiscale modeling. A comparison of six concurrent multiscale methods was performed in their application to a common problem using a common framework in order to evaluate each method relative to each other. Each method was compared in both a quasi-static case of crack tip deformation as well as a dynamic case in the study of crack growth. Each method was compared to the fully atomistic model with similarities and differences between the methods noted and reasons for these provided. The results showed a distinct difference between direct and handshake coupling methods. In general, for the quasi-static case, the direct coupling methods took longer to run compared to the handshake coupling methods but had less error with respect to displacement and energy. In the dynamic case, the handshake methods took longer to run, but had reduced error most notably when wave dissipation at the atomistic/continuum region was an issue. Comparing each method under common conditions showed that many similarities exist between each method that may be hidden by their original formulation. The comparison also showed the dependency on the application as well as the simulation techniques used in determining the performance of each method.

References

References
1.
Freund
,
L. B.
,
1990
,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
Cambridge
, UK.
2.
Zhou
,
S. J.
,
Beazley
,
D. M.
,
Lomdahl
,
P. S.
, and
Holian
,
B. L.
,
1996
, “
Large-Scale Molecular Dynamics Simulations of Fracture and Deformation
,”
J. Comput.-Aided Mater. Des.
,
3
(
1–3
), pp.
183
186
.10.1007/BF01185653
3.
Miller
,
R. E.
, and
Tadmor
,
E. B.
,
2009
, “
A Unified Framework and Performance Benchmark of Fourteen Multiscale Atomistic/Continuum Coupling Methods
,”
Model. Simul. Mater. Sci. Eng.
,
17
(
5
), p.
053001
.10.1088/0965-0393/17/5/053001
4.
Csányi
,
G.
,
Albaret
,
T.
,
Payne.
M. C.
, and
De Vita
,
A.
,
2004
, “
Learn on the Fly: A Hybrid Classical and Quantum-Mechanical Molecular Dynamics Simulation
,”
Phys. Rev. Lett.
,
93
(
17
), p.
175503
.10.1103/PhysRevLett.93.175503
5.
Peng
,
Q.
, and
Lu
,
G.
,
2011
, “
A Comparative Study of Fracture in Al: Quantum Mechanical Versus Empirical Atomistic Description
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
775
786
.10.1016/j.jmps.2011.01.008
6.
Curtin
,
W. A.
, and
Miller
,
R. E.
,
2003
, “
Atomistic/Continuum Coupling in Computational Materials Science
,”
Model. Simul. Mater. Sci. Eng.
,
11
(
3
), pp.
R33
R68
.10.1088/0965-0393/11/3/201
7.
Liu
,
W. K.
,
Karpov
,
E. G.
,
Zhang
,
S.
, and
Park
,
H. S.
,
2004
, “
An Introduction to Computational Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1529
1578
.10.1016/j.cma.2003.12.008
8.
Park
,
H. S.
, and
Liu
,
W. K.
,
2004
, “
An Introduction and Tutorial on Multiple-Scale Analysis in Solids
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1733
1772
.10.1016/j.cma.2003.12.054
9.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and,
Phillips
,
R.
,
1996
, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A.
,
73
(
6
), pp.
1529
1563
.10.1080/01418619608243000
10.
Miller
,
R.
,
Ortiz
,
M.
,
Phillips
,
R.
,
Shenoy
,
V.
, and
Tadmor
,
E. B.
,
1998
, “
Quasicontinuum Models of Fracture and Plasticity
,”
Eng. Fract. Mech.
,
61
(
3–4
), pp.
427
444
.10.1016/S0013-7944(98)00047-2
11.
Dupuy
,
L. M.
,
Tadmor
,
E. B.
,
Miller
,
R. E.
, and
Phillips
,
R.
,
2005
, “
Finite-Temperature Quasicontinuum: Molecular Dynamics Without All the Atoms
,”
Phys. Rev. Lett.
,
95
(
6
), pp.
1
4
.10.1103/PhysRevLett.95.060202
12.
Shilkrot
,
L. E.
,
Miller
,
R. E.
, and
Curtin
,
W. A.
,
2004
, “
Multiscale Plasticity Modeling: Coupled Atomistics and Discrete Dislocation Mechanics
,”
J Mech. Phys. Solids
,
52
(
4
), pp.
755
787
.10.1016/j.jmps.2003.09.023
13.
Qu
,
S.
,
Shastry
,
V.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
,
2005
, “
A Finite-Temperature Dynamic Coupled Atomistic/Discrete Dislocation Method
,”
Model. Simul. Mater. Sci. Eng.
,
13
(
7
), pp.
1101
1118
.10.1088/0965-0393/13/7/007
14.
Xiao
,
S. P.
, and
Belytschko
,
T.
,
2004
, “
A Bridging Domain Method for Coupling Continua With Molecular Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1645
1669
.10.1016/j.cma.2003.12.053
15.
Fish
,
J.
,
Nuggehally
,
M. A.
,
Shephard
,
M. S.
,
Picu
,
C. R.
,
Badia
,
S.
,
Parks
,
M. L.
, and
Gunzburger
,
M.
,
2007
, “
Concurrent AtC Coupling Based on a Blend of the Continuum Stress and the Atomistic Force
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
45–48
), pp.
4548
4560
.10.1016/j.cma.2007.05.020
16.
Badia
,
S.
,
Parks
,
M.
,
Bochev
,
P.
,
Gunzburger
,
M.
, and
Lehouc
,
Q.
,
2008
, “
On Atomistic-to-Continuum Coupling by Blending
,”
Multiscale Model. Simul.
,
7
(
1
), pp.
381
406
.10.1137/07069969X
17.
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2003
, “
Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition
,”
J. Comput. Phys.
,
190
(
1
), pp.
249
274
.10.1016/S0021-9991(03)00273-0
18.
Qian
,
D.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2004
, “
A Multiscale Projection Method for the Analysis of Carbon Nanotubes
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1603
1632
.10.1016/j.cma.2003.12.016
19.
Shenoy
,
V. B.
,
Miller
,
R.
,
Tadmor
,
E. B.
,
Rodney
,
D.
,
Phillips
,
R.
, and
Ortiz
,
M.
,
1999
, “
An Adaptive Finite Element Approach to Atomic-Scale Mechanics—The Quasicontinuum Method
,”
J. Mech. Phys. Solids
,
47
(
3
), pp.
611
642
.10.1016/S0022-5096(98)00051-9
You do not currently have access to this content.