This paper proposes an effective numerical method to generate approximate solutions for the overall nonlinear elastic response of isotropic filled elastomers subjected to arbitrarily large deformations. The basic idea is first to idealize the random microstructure of isotropic filled elastomers as an assemblage of composite spheres and then to generate statically admissible numerical solutions, via finite elements, for these material systems directly in terms of the response of a single composite sphere subjected to affine stress boundary conditions. The key theoretical strengths of the method are discussed, and its accuracy and numerical efficiency assessed by comparisons with corresponding 3D full-field simulations. The paper concludes with a discussion of straightforward extensions of the proposed method to account for general classes of anisotropic microstructures and filler-elastomer interphasial phenomena, features of key importance in emerging advanced applications.

References

References
1.
Leblanc
,
J. L.
,
2010
,
Filled Polymers: Science and Industrial Applications
,
CRC Press
,
Boca Raton, FL
.
2.
Smallwood
,
H. M.
,
1944
, “
Limiting Law of the Reinforcement of Rubber
,”
J. Appl. Phys.
,
15
, pp.
758
766
.10.1063/1.1707385
3.
Guth
,
E.
,
1945
, “
Theory of Filler Reinforcement
,”
J. Appl. Phys.
,
16
, pp.
20
25
.10.1063/1.1707495
4.
Hill
,
R.
,
1972
, “
On Constitutive Macrovariables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. Lond. A
,
326
, pp.
131
147
.10.1098/rspa.1972.0001
5.
Lopez-Pamies
,
O.
,
Goudarzi
,
T.
, and
Nakamura
,
T.
,
2013
, “
The Nonlinear Elastic Response of Suspensions of Rigid Inclusions in Rubber: I—An Exact Result for Dilute Suspensions
,”
J. Mech. Phys. Solids
,
61
, pp.
1
18
.10.1016/j.jmps.2012.08.010
6.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
, pp.
143
150
.10.1115/1.3636446
7.
Barrett
,
K. E.
, and
Talbot
,
D. R. S.
,
1996
, “
Bounds for the Effective Properties of a Nonlinear Two-Phase Composite Dielectric
,”
Proc. 8th Int. Symp. Continuum Models and Discrete Systems
, Varna, Bulgaria, June 11–16, 1995,
World Scientific
,
Singapore
.
8.
Carpi
,
F.
,
De Rossi
,
D.
,
Kornbluh
,
R.
,
Pelrine
,
R.
, and
Sommer-Larsen
,
P.
,
2008
,
Dielectric Elastomers as Electromechanical Transducers
,
Elsevier
,
New York
.
9.
Danas
,
K.
,
Kankanala
,
S. V.
, and
Triantafyllidis
,
N.
,
2012
, “
Experiments and Modeling of Iron-Particle-Filled Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
60
, pp.
120
138
.10.1016/j.jmps.2011.09.006
10.
Ogden
,
R. W.
,
1978
, “
Extremum Principles in Non-Linear Elasticity and Their Application to Composites—I Theory
,”
Int. J. Solids. Struct.
,
14
, pp.
265
282
.10.1016/0020-7683(78)90037-9
11.
Lee
,
S. J.
, and
Shield
,
R. T.
,
1980
, “
Variational Principles in Finite Elastostatics
,
J. Appl, Math. Phys.
,
31
, pp.
437
453
.10.1007/BF01590856
12.
Khisaeva
,
Z. F.
, and
Ostoja-Starzewski
,
M.
,
2006
, “
Mesoscale Bounds in Finite Elasticity and Thermoelasticity of Random Composites
,”
Proc. R. Soc. Lond. A
,
462
, pp.
1167
1180
.10.1098/rspa.2005.1614
13.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Dover Publications
,
Mineola, NY
.
14.
Ramier
,
J.
,
2004
, “
Comportement Mécanique d’élastomérs Chargés, Influence de l'adhésion Charge–Polymére, Influence de la Morphologie
,” Ph. D. dissertation, Institut National des Science Appliquées de Lyon, France.
15.
Milton
,
G. W.
,
2002
,
The Theory of Composites
(Cambridge Monographs on Applied and Computational Mathematics, Vol. 6),
Cambridge University Press
,
Cambridge, UK
.
16.
Willis
,
J. R.
,
1989
, “
The Structure of Overall Constitutive Relations for a Class of Nonlinear Composites
,
IMA J. Appl. Math.
,
43
, pp.
231
242
.10.1093/imamat/43.3.231
17.
Dassault Systemes Simulia Corp.
,
2011
,
ABAQUS Version 6.11 Documentation
, Providence, RI.
18.
Lopez-Pamies
,
O.
,
2010
,“
A New I1-Based Hyperelastic Model for Rubber Elastic Materials
,”
Comptes Rendus Mecanique
,
338
, pp.
3
11
.10.1016/j.crme.2009.12.007
19.
Lopez-Pamies
,
O.
,
Goudarzi
,
T.
, and
Danas
,
K.
,
2013
, “
The Nonlinear Elastic Response of Suspensions of Rigid Inclusions in Rubber: II—A Simple Explicit Approximation for Finite-Concentration Suspensions
,”
J. Mech. Phys. Solids
,
61
, pp.
19
37
.10.1016/j.jmps.2012.08.013
20.
Bornert
,
M.
,
Stolz
,
C.
, and
Zaoui
,
A.
,
1996
, “
Morphologically Representative Pattern-Based Bounding in Elasticity
,”
J. Mech. Phys. Solids
,
44
, pp.
307
331
.10.1016/0022-5096(95)00083-6
21.
Bertoldi
,
K.
, and
Lopez-Pamies
,
O.
,
2012
, “
Some Remarks on the Effect of Interphases on the Mechanical Response and Stability of Fiber-Reinforced Elastomers
,”
ASME J. Appl. Mech.
,
79
, p.
031023
.10.1115/1.4006024
22.
Qu
,
M.
,
Deng
,
F.
,
Kalkhoran
,
S. M.
,
Gouldstone
,
A.
,
Robisson
,
A.
, and
Van Vliet
,
K. J.
,
2011
, “
Nanoscale Visualization and Multiscale Mechanical Implications of Bound Rubber Interphases in Rubber-Carbon Black Nanocomposites
,”
Soft Matter
,
7
, pp.
1066
1077
.10.1039/c0sm00645a
You do not currently have access to this content.