Parametric excitation refers to dynamics problems in which the forcing function enters into the governing differential equation as a variable coefficient. Evolutionary dynamics refers to a mathematical model of natural selection (the “replicator” equation) which involves a combination of game theory and differential equations. In this paper we apply perturbation theory to investigate parametric resonance in a replicator equation having periodic coefficients. In particular, we study evolution in the Rock-Paper-Scissors game, which has biological and social applications. Here periodic coefficients could represent seasonal variation. We show that 2:1 subharmonic resonance can destabilize the usual “Rock-Paper-Scissors” equilibrium for parameters located in a resonant tongue in parameter space. However, we also show that the tongue may be absent or very small if the forcing parameters are chosen appropriately.

References

References
1.
Smith
,
J. M.
,
Evolution and the Theory of Games
,
Cambridge University
,
Cambridge, UK
.
2.
Hofbauer
,
J.
, and
Sigmund
,
K.
,
1998
,
Evolutionary Games and Population Dynamics
,
Cambridge University
,
Cambridge, UK
.
3.
Nowak
,
M. A.
,
2006
,
Evolutionary Dynamics: Exploring the Equations of Life
,
Harvard University
,
Cambridge, MA
.
4.
Schuster
,
P.
, and
Sigmund
,
K.
,
1983
, “
Replicator Dynamics
,”
J. Theor. Biol.
,
100
, pp.
533
538
.10.1016/0022-5193(83)90445-9
5.
Sinervo
,
B.
, and
Lively
,
C. M.
,
1996
, “
The Rock-Paper-Scissors Game and the Evolution of Alternative Male Strategies
,”
Nature
,
380
, pp.
240
243
.10.1038/380240a0
6.
Kerr
,
B.
,
Riley
,
M. A.
,
Feldman
,
M. W.
, and
Bohannan
,
B. J. M.
,
2002
, “
Local Dispersal Promotes Biodiversity in a Real-Life Game of Rock-Paper-Scissors
,”
Nature
,
418
, pp.
171
174
.10.1038/nature00823
7.
Czaran
,
T. L.
,
Hoekstra
,
R. F.
, and
Pagie
,
L.
, 2002, “
Chemical Warfare Between Microbes Promotes Biodiversity
,”
PNAS
,
99
, pp.
786
790
.10.1073/pnas.012399899
8.
Hauert
,
C.
,
De Monte
,
S.
,
Hofbauer
,
J.
, and
Sigmund
,
K.
,
2002
, “
Volunteering as Red Queen Mechanism for Cooperation in Public Goods Games
,”
Science
296
, pp.
1129
1132
.10.1126/science.1070582
9.
Hauert
,
C.
,
Traulsen
,
A.
,
Brandt
,
H.
,
Nowak
,
M. A.
, and
Sigmund
,
K.
,
2007
, “
Via Freedom to Coercion: The Emergence of Costly Punishment
,”
Science
316
, pp.
1905
1907
.10.1126/science.1141588
10.
Rand
,
D. G.
, and
Nowak
,
M. A.
,
2011
, “
The Evolution of Antisocial Punishment in Optional Public Goods Games
,”
Nature Commun.
,
2
, p.
434
.10.1038/ncomms1442
11.
Demirel
,
G.
,
Prizak
,
R.
,
Reddy
,
P. N.
, and
Gross
, T.,
2011
, “
Opinion Formation and Cyclic Dominance in Adaptive Networks
,”
Eur. Phys. J. B
84
, pp.
541
548
.10.1140/epjb/e2011-10844-4
12.
Rand
,
R. H.
,
Yazhbin
,
M.
, and
Rand
,
D. G.
,
2011
, “
Evolutionary Dynamics of a System With Periodic Coefficients
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
3887
3895
.10.1016/j.cnsns.2011.02.023
13.
Ruelas
,
R. E.
,
Rand
,
D. G.
, and
Rand
,
R. H.
,
2012
, “
Nonlinear Parametric Excitation of an Evolutionary Dynamical System
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
226(8), pp. 1912–1920.10.1177/0954406211432066
14.
Stoker
,
J.
,
1950
,
Nonlinear Vibrations in Mechanical and Electrical Systems
,
Wiley
,
New York
.
15.
Rand
,
R. H.
,
2005
, “
Lecture Notes in Nonlinear Vibrations
,” http://www.math.cornell.edu/~rand/randdocs/nlvibe52.pdf
16.
Magnus
,
W.
, and
Winkler
,
S.
,
1979
,
Hill's Equation
,
Dover
,
New York
.
17.
Recktenwald
,
G.
, and
Rand
,
R.
,
2005
, “
Coexistence Phenomenon in Autoparametric Excitation of Two Degree of Freedom Systems
,”
Int. J. Nonlinear Mech.
,
40
, pp.
1160
1170
.10.1016/j.ijnonlinmec.2005.05.001
You do not currently have access to this content.