An edge-cracked half-plane 0 < x < A and a half-plane x > 0 with a semi-infinite crack x > a perpendicular to the edge are examined in this paper. Uniform crack-face loading is thoroughly examined, with a thorough exposition of the Koiter Wiener–Hopf approach (Koiter, 1956, “On the Flexural Rigidity of a Beam Weakened by Transverse Saw Cuts,” Proc. Royal Neth. Acad. of Sciences, B59, pp. 354–374); an analytical expression for the corresponding T-stress is obtained. For the additional cases of (i) nonuniform edge-crack crack-face loading σ(x/A)k ((k)>-1), (ii) concentrated loading at the edge-crack crack mouth, the Wiener–Hopf solutions and analytical T-stress expressions are provided, and tables of T-stress results for σ(x/A)k and σ(1-x/A)k are presented. A Green's function for the edge-crack T-stress is developed. The differing developments made by Koiter (1956, “On the Flexural Rigidity of a Beam Weakened by Transverse Saw Cuts,” Proc. Royal Neth. Acad. of Sciences, B59, pp. 354–374, Wigglesworth (1957, “Stress Distribution in a Notched Plate,” Mathematika, 4, pp. 76–96), and Stallybrass (1970, “A Crack Perpendicular to an Elastic Half-Plane,” Int. J. Eng. Sci., 8, pp. 351–362) for the case of an edge-cracked half-plane are enhanced by deducing a quantitative relationship between the three different Wiener–Hopf type factorizations. An analytical universal T-stress expression for edge-cracks is derived. Finally, the case of a vanishing uncracked ligament in a half-plane is examined, and the associated Wiener–Hopf solution and analytical T-stress expression are again provided. Several limiting cases are examined.

References

References
1.
Rice
,
J. R.
,
1974
, “
Limitations to the Small Scale Yielding Approximation for Crack Tip Plasticity
,”
J. Mech. Phys. Solids
,
22
, pp.
17
26
.10.1016/0022-5096(74)90010-6
2.
Fett
,
T.
,
2009
,
Stress Intensity Factors—T-Stresses—Weight Functions
, (Supplemental Volume IKM 55),
KIT Scientific Publishing
, University of Karlsruhe, Karlsruhe, Germany.
3.
Koiter
,
W. T.
,
1956
, “
On the Flexural Rigidity of a Beam Weakened by Transverse Saw Cuts
,”
Proc. Royal Neth. Acad. of Sciences
,
B59
, pp.
354
374
.
4.
Benthem
,
J. P.
, and
Koiter
,
W. T.
,
1973
, “
Asymptotic Approximations to Crack Problems
,”
Mechanics of Fracture
, Vol.
1
, G. C. Sih, ed.,
Noordhoff
,
Leyden, The Netherlands
, pp.
131
178
.
5.
Mu
,
Z.
,
2004
, “
Fracture of Baltic and Antarctic First-Year Sea Ice
,” Ph.D. thesis, Clarkson University, Potsdam, NY.
6.
Tranter
,
C. J.
,
1948
, “
The Use of the Mellin Transform in Finding the Stress Distribution in an Infinite Wedge
Q. J. Mech. Appl. Math.
,
1
, pp.
125
130
.10.1093/qjmam/1.1.125
7.
Theocaris
,
P. S.
,
Tsamasfyros
,
G.
, and
Andrianopoulos
,
N.
,
1979
, “
The Problem of the Infinite Wedge
,”
Acta Mech.
34
, pp.
63
87
.10.1007/BF01176258
8.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
1994
,
Table of Integrals, Series and Products
, 5th ed.,
Academic
,
New York
.
9.
Koiter
,
W. T.
,
1965
, “
Discussion of ‘Rectangular Tensile Sheet With Symmetric Edge Cracks' by O.L. Bowie
,”
ASME J. Appl. Mech.
,
32
, pp.
237
.10.1115/1.3625769
10.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
3rd ed.,
ASME
,
New York
.
11.
Broberg
,
K. B.
,
2005
, “
A Note on T-Stress Determination Using Dislocation Arrays
,”
Int. J. Fract.
,
131
, pp.
1
14
.10.1007/s10704-004-3637-5
12.
Fett
,
T.
,
Rizzi
,
G.
,
Bahr
,
H.-A.
,
Bahr
,
U.
,
Pham
,
V.-B.
, and
Balke
,
H.
,
2007
, “
Analytical Solutions for Stress Intensity Factor, T-Stress and Weight Function for the Edge-Cracked Half-Space
,”
Int. J. Fract.
,
146
, pp.
189
195
.10.1007/s10704-007-9152-8
13.
Stallybrass
,
M. P.
,
1970
, “
A Crack Perpendicular to an Elastic Half-Plane
,”
Int. J. Eng. Sci.
,
8
, pp.
351
362
.10.1016/0020-7225(70)90073-X
14.
Wang
,
S.
, and
Dempsey
,
J. P.
,
2011
, “
A Cohesive Edge Crack
,”
Eng. Fract. Mech.
,
78
, pp.
1353
1373
.10.1016/j.engfracmech.2011.02.018
15.
Sham
,
T. L.
,
1991
, “
The Determination of the Elastic T-Term Using Higher Order Weight Functions
,”
Int. J. Fract.
,
48
, pp.
81
102
.10.1007/BF00018392
16.
Wigglesworth
,
L. A.
,
1957
, “
Stress Distribution in a Notched Plate
,”
Mathematika
,
4
, pp.
76
96
.10.1112/S002557930000111X
17.
Slepyan
,
L. I.
,
2002
, private communication.
18.
Stallybrass
,
M. P.
,
1971
, “
A Semi-Infinite Crack Perpendicular to the Surface of an Elastic Half-Plane
,”
Int. J. Eng. Sci.
,
9
, pp.
133
150
.10.1016/0020-7225(71)90016-4
19.
Kipnis
,
L. A.
,
1979
, “
Elastic Equilibrium of a Wedge With a Crack
,”
J. Appl. Math. Mech.
,
43
, pp.
164
170
.10.1016/0021-8928(79)90136-9
You do not currently have access to this content.