This paper presents a new augmented finite element method (A-FEM) that can account for path-arbitrary, multiple intraelemental discontinuities with a demonstrated improvement in numerical efficiency by two orders of magnitude when compared to the extended finite element method (X-FEM). We show that the new formulation enables the derivation of explicit, fully condensed elemental equilibrium equations that are mathematically exact within the finite element context. More importantly, it allows for repeated elemental augmentation to include multiple interactive cracks within a single element without additional external nodes or degrees of freedom (DoFs). A novel algorithm that can rapidly and accurately solve the nonlinear equilibrium equations at the elemental level has also been developed for cohesive cracks with piecewise linear traction-separation laws. This efficient new solving algorithm, coupled with the mathematically exact elemental equilibrium equation, leads to dramatic improvement in numerical accuracy, efficiency, and stability when dealing with arbitrary cracking problems. The A-FEM's excellent capability in high-fidelity simulation of interactive cohesive cracks in homogeneous and heterogeneous solids has been demonstrated through several numerical examples.

References

References
1.
Ha
,
Y. D.
, and
Bobaru
,
F.
,
2010
, “
Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics
,”
Int. J. Fracture
,
162
, pp.
229
244
.10.1007/s10704-010-9442-4
2.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
, pp.
175
209
.10.1016/S0022-5096(99)00029-0
3.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
, pp.
1526
1535
.10.1016/j.compstruc.2004.11.026
4.
Babuška
,
I.
, and
Melenk
,
J. M.
,
1997
, “
The Partition of Unity Method
,”
Int. J. Numer. Meth. Eng.
,
40
, pp.
727
758
.10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
5.
Moës
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
, pp.
813
833
.10.1016/S0013-7944(01)00128-X
6.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
.
Int. J. Numer. Meth. Eng.
,
46
, pp.
131
150
.10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
7.
Strouboulis
,
T.
,
Copps
,
K.
, and
Babuška
,
I.
,
2001
, “
The Generalized Finite Element Method
,
Comput. Mech. Adv.
,
190
, pp.
4801
4193
.
8.
Daux
,
C.
,
Moës
,
N.
,
Dolbow
,
J.
,
Sukumar
,
N.
, and
Belytschko
,
T.
,
2000
, “
Arbitrary Branched and Intersecting Cracks With the Extended Finite Element Method
,”
Int. J. Numer. Meth. Eng.
,
48
, pp.
1741
1760
.10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
9.
Hettich
,
T.
,
Hund
,
A.
, and
Ramm
,
E.
,
2008
, “
Modeling of Failure in Composites by X-FEM and Level Sets Within a Multiscale Framework
,”
Comput. Meth. Appl. M.
,
197
(
5
), pp.
414
424
.10.1016/j.cma.2007.07.017
10.
Huynh
,
D. B. P.
, and
Belytschko
,
T.
,
2009
, “
The Extended Finite Element Method for Fracture in Composite Materials
,”
Int. J. Numer. Meth. Eng.
,
77
, pp.
214
239
.10.1002/nme.2411
11.
Wells
,
G. N.
, and
Sluys
,
L. J.
,
2001
, “
A New Method for Modeling Cohesive Cracks Using Finite Elements
,”
Int. J. Numer. Meth. Eng.
,
50
, pp.
2667
2682
.10.1002/nme.143
12.
Wells
,
G. N.
, and
Sluys
,
L. J.
,
2001
, “
Three-Dimensional Embedded Discontinuity Model for Brittle Fracture
,”
Int. J. Solid Struct.
,
38
(
5
), pp.
897
913
.10.1016/S0020-7683(00)00029-9
13.
Wells
,
G. N.
,
Sluys
,
L. J.
, and
de Borst
,
R.
,
2002
, “
Simulating the Propagation of Displacement Discontinuities in a Regularized Strain-Softening Medium
,”
Int. J. Numer. Meth. Eng.
,
53
(
5
), pp.
1235
1256
.10.1002/nme.375
14.
Song
,
J. H.
,
Areias
,
P. M. A.
, and
Belytschko
,
T.
,
2006
, “
A Method for Dynamic Crack and Shear Band Propagation With Phantom Nodes
,”
Int. J. Numer. Meth. Eng
,
67
, pp.
868
893
.10.1002/nme.1652
15.
Van de Meer
,
F. P.
, and
Sluys
,
L. J.
,
2009
, “
A Phantom Node Formulation With Mixed Mode Cohesive Law for Splitting in Laminates
,”
Int. J. Fracture
,
158
, pp.
107
124
.10.1007/s10704-009-9344-5
16.
Remmers
,
J. C.
,
2006
,
Discontinuities in Materials and Structures—A Unifying Computational Approach
,
Delft University
of Technology, Delft, The Netherlands.
17.
Remmers
,
J. J.
,
de Borst
,
C. R.
, and
Needleman
,
A.
,
2003
, “
A Cohesive Segments Method for the Simulation of Crack Growth
,”
Comput. Mech.
,
31
(
1–2 spec.
), pp.
69
77
.10.1007/s00466-002-0394-z
18.
Hansbo
,
A.
, and
Hansbo
,
P.
,
2004
, “
A Finite Element Method for the Simulation of Strong and Weak Discontinuities in Solid Mechanics
,”
Comput. Meth. Appl. M.
,
193
, pp.
3523
3540
.10.1016/j.cma.2003.12.041
19.
Fang
,
X. J.
,
Zhou
,
Z. Q.
,
Cox
,
B. N.
, and
Yang
,
Q. D.
,
2011
, “
High-Fidelity Simulations of Multiple Fracture Processes in a Laminated Composites in Tension
,”
J. Mech. Phys. Solids
,
59
, pp.
1355
1373
.10.1016/j.jmps.2011.04.007
20.
Ling
,
D. S.
,
Yang
,
Q. D.
, and
Cox
,
B. N.
,
2009
, “
An Augmented Finite Element Method for Modeling Arbitrary Discontinuities in Composite Materials
,”
Int. J. Fracture
,
156
, pp.
53
73
.10.1007/s10704-009-9347-2
21.
Budyn
,
E. R. L.
,
2004
,
Multiple Crack Growth by the Extended Finite Element Method[D]
,
Northwestern University
,
Evanston, IL
.
22.
Holl
,
M.
,
Loehnert
,
S.
, and
Wriggers
,
P.
,
2012
, “
An Adaptive Multiscale Method for Crack Propagation and Crack Coalescence
,”
Int. J. Numer. Meth. Eng
, 93(1), pp. 25–51.10.1002/nme.4373
23.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J. R.
, and
Landis
,
C. M.
,
2011
,
A Phase-Field Description of Dynamic Brittle Fracture
,
The Institute for Computational Engineering and Sciences, The University of Texas at Austin
,
Austin, TX
.
24.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger, F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Meth. Appl. M.
,
199
, pp.
2765
2778
.10.1016/j.cma.2010.04.011
25.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elasticity
,
91
, pp.
5
148
.10.1007/s10659-007-9107-3
26.
Belytschko
,
T.
,
Fish
,
J.
, and
Engelmann
,
B. E.
,
1988
, “
A Finite Element With Embedded Localization Zones
,”
Comput. Meth. Appl. M.
,
70
(
1
), pp.
59
89
.10.1016/0045-7825(88)90180-6
27.
Dvorkin
,
E. N.
,
Cuitiño
,
A. M.
, and
Gioia
,
G.
,
1990
, “
Finite Elements With Displacement Interpolated Embedded Localization Lines Insensitive to Mesh Size and Distortions
,”
Int. J. Numer. Meth. Eng.
,
30
(
3
), pp.
541
564
.10.1002/nme.1620300311
28.
Ortiz
,
M.
,
Leroy
,
A.
, and
Needleman
,
A.
,
1987
, “
A Finite Element Method for Localized Failure Analysis
,”
Comput. Meth. Appl. M.
,
61
, pp.
189
214
.10.1016/0045-7825(87)90004-1
29.
Alfaiate
,
J.
,
Wells
,
G. N.
, and
Sluys
,
L. J.
,
2002
, “
On the Use of Embedded Discontinuity Elements With Crack Path Continuity for Mode-I and Mixed-Mode Fracture
,”
Eng. Fract. Mech.
,
69
, pp.
661
686
.10.1016/S0013-7944(01)00108-4
30.
Ibrahimbegovic
,
A.
, and
Melnyk
,
S.
,
2007
, “
Embedded Discontinuity Finite Element Method for Modeling of Localized Failure in Heterogeneous Materials With Structured Mesh: An Alternative to Extended Finite Element Method
,”
Comput. Mech.
,
40
(
1
), pp.
149
155
.10.1007/s00466-006-0091-4
31.
Sluys
,
L. J.
, and
Berends
,
A. H.
,
1998
, “
Discontinuous Failure Analysis for Mode-I and Mode-II Localization Problems
,”
Int. J. Solids Struct.
,
35
, pp.
4257
4274
.10.1016/S0020-7683(97)00313-2
32.
Linder
,
C.
, and
Armero
,
F.
,
2009
, “
Finite Elements With Embedded Branching
,”
Finite Elem. Anal. Des.
,
45
, pp.
280
293
.10.1016/j.finel.2008.10.012
33.
Linder
,
C.
, and
Armero
,
F.
,
2007
, “
Finite Elements With Embedded Strong Discontinuities for the Modeling of Failure in Solids
,”
Int. J. Numer. Meth. Eng
,
72
, pp.
1391
1433
.10.1002/nme.2042
34.
Dias-da-Costa
,
D.
,
Alfaiate
,
J.
,
Sluys
,
L. J.
, and
Júlio
,
E.
,
2009
, “
Towards a Generalization of a Discrete Strong Discontinuity Approach
,”
Comput. Meth. Appl. M.
,
198
, pp.
3670
3681
.10.1016/j.cma.2009.07.013
35.
Dias-da-Costa
,
D.
,
Alfaiate
,
J.
,
Sluys
,
L. J.
,
Areias
,
P.
, and
Júlio
,
E.
,
2012
, “
An Embedded Formulation With Conforming Finite Elements to Capture Strong Discontinuities
,”
Int. J. Numer. Meth. Eng
, 93(2), pp. 244–254.10.1002/nme.4393
36.
Wang, J. S., and Suo, Z.,
1990
, “Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwich,”
Acta Metallurgica et Materialia
, 38(7), pp. 1279–1290.10.1016/0956-7151(90)90200-Z
37.
Yang
,
Q.
, and
Thouless
,
M. D.
,
2001
, “
Mixed Mode Fracture of Plastically Deforming Adhesive Joints
,”
Int. J. Fracture
,
110
, pp.
175
187
.10.1023/A:1010869706996
38.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
,
1999
, “
Numerical Simulations of Adhesively-Bonded Beams Failing With Extensive Plastic Deformation
,”
J. Mech. Phys. Solids
,
47
, pp.
1337
1353
.10.1016/S0022-5096(98)00101-X
39.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
,
2001
, “
Elastic-Plastic Mode-II Fracture of Adhesive Joints
,”
Int. J. Solids Struct.
,
38
, pp.
3251
3262
.10.1016/S0020-7683(00)00221-3
40.
Yang
,
Q.
, and
Cox
,
B.
,
2005
, “
Cohesive Models for Damage Evolution in Laminated Composites
,”
Int. J. Fracture
,
133
(
2
), pp.
107
137
.10.1007/s10704-005-4729-6
41.
Yang
,
Q. D.
,
Fang
,
X. J.
,
Shi
,
J. X.
, and
Lua
,
J.
,
2010
, “
An Improved Cohesive Element for Shell Delamination Analyses
,”
Int. J. Numer. Meth. Eng.
,
83
(
5
), pp.
611
641
.10.1002/nme.2848
42.
Parmigiani
,
J.
, and
Thouless
,
M. D.
,
2007
, “
The Effects of Cohesive Strength and Toughness on Mixed-Mode Delamination of Beam-Like Geometries
,”
Eng. Fract. Mech.
,
74
(
14
), pp.
2675
2699
.10.1016/j.engfracmech.2007.02.005
43.
de Borst
,
R
.,
2003
, “
Numerical Aspects of Cohesive Zone Models
,”
Eng. Fract. Mech.
,
70
, pp.
1743
1757
.10.1016/S0013-7944(03)00122-X
44.
Yang
,
Q. D.
,
Cox
,
B. N.
,
Nalla
,
R. K.
, and
Ritchie
,
R. O.
,
2006
, “
Re-Evaluating the Toughness of Human Cortical Bone
,”
Bone
,
38
, pp.
878
887
.10.1016/j.bone.2005.10.014
45.
Yang
,
Q. D.
,
Cox
,
B. N.
,
Nalla
,
R. K.
, and
Ritchie
,
R. O.
,
2006
, “
Fracture and Length Scales in Human Cortical Bone: The Necessity of Nonlinear Fracture Models
,”
Biomaterials
,
27
, pp.
2095
2113
.10.1016/j.biomaterials.2005.09.040
46.
Falk
,
M. L.
,
Needleman
,
A.
, and
Rice
,
J. R.
,
2001
, “
A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture
,”
J. Phys. IV
,
11
, pp.
43
50
.10.1051/jp4:2001506
47.
Hamitouche
,
L.
,
Tarfaoui
,
M.
, and
Vautrin
,
A.
,
2008
, “
An Interface Debonding Law Subject to Viscous Regularization for Avoiding Instability: Application to the Delamination Problems
,”
Eng. Fract. Mech.
,
75
(
10
), pp.
3084
3100
.10.1016/j.engfracmech.2007.12.014
48.
Xie
,
D.
, and
Waas
,
A. M.
,
2006
, “
Discrete Cohesive Zone Model for Mixed-Mode Fracture Using Finite Element Analysis
,”
Eng. Fract. Mech.
,
73
, pp.
1783
1796
.10.1016/j.engfracmech.2006.03.006
You do not currently have access to this content.