Adhesion plays a significant role in the friction and wear in the case where the contact surfaces are continuous and smooth such that roughness-based factors are negligible. Therefore, imposing an external load to overcome the friction is, in essence, a failure process of adhesive junctions. In this work, a finite element model was developed in order to investigate the formation of adhesive wear particles and static friction based on the ductile fracture of junctions. Focusing on the cylindrical contact and the combined contact loading configuration, a modified element deletion method with three empiric fracture criteria was employed and the failed elements satisfying some fracture criterion were used to represent the cracks. Based on the different crack development stages, a qualitative adhesive wear mechanism was summarized. The simulation results indicate that the secondary crack initiated in the pile-up of material possibly accounts for the crack kinking, which is the origin of the flake-like wear particle. Friction behaviors under different loading configurations were investigated and a simple comparison for three different fracture models was presented. It was found that all three models show the same trend of friction decreasing with the increase of normal preload. Where the most conservative Bao–Wierzibicki (BW) fracture model predicts higher friction compared to two other fracture models, the Johnson–Cook (JC) model predicts a lower ductile fracture strain, thus the ductility of the material is relatively underestimated.

References

References
1.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1939
, “
The Area of Contact Between Stationary and Between Moving Surfaces
,”
Proc. R. Soc. London, Ser. A
,
169
, pp.
391
413
.10.1098/rspa.1939.0005
2.
Bowden
,
F. P.
, and
Leben
,
L.
,
1939
, “
The Nature of Sliding and the Analysis of Friction
,”
Proc. R. Soc. London, Ser. A
,
169
, pp.
371
391
.10.1098/rspa.1939.0004
3.
McFarlane
,
J. S.
, and
Tabor
,
D.
,
1950
, “
Relation Between Friction and Adhesion
,”
Proc. R. Soc. London, Ser. A
,
202
, pp.
244
253
.10.1098/rspa.1950.0097
4.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1954
,
Friction and Lubrication of Solids
,
Clarendon
,
Oxford, UK
.
5.
Bowden
,
F. P.
, and
Rowe
,
G. W.
,
1956
, “
The Adhesion of Clean Metals
,”
Proc. R. Soc. London, Ser. A
,
233
, pp.
429
442
.10.1098/rspa.1956.0001
6.
Tabor
,
D.
,
1959
, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. London, Ser. A
,
251
, pp.
378
393
.10.1098/rspa.1959.0114
7.
Carpick
,
R. W.
,
Agrait
,
N.
,
Ogletree
,
D. F.
, and
Salmeron
M.
,
1996
, “
Measurement of Interfacial Shear (Friction) With an Ultrahigh Vacuum Atomic Force Microscope
,”
J. Vac. Sci. Technol. B
,
14
(
2
), pp.
1289
1295
.10.1116/1.589083
8.
Szlufarska
,
I.
,
Chandross
,
M.
, and
Carpick
R. W.
,
2008
, “
Recent Advances in Single-Asperity Nanotribology
,”
J. Physics D: Appl. Phys.
,
41
(
12
), pp.
1
39
.10.1088/0022-3727/41/12/123001
9.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
.
10.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
57
63
.10.1115/1.3261575
11.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
, pp.
499
506
.10.1115/1.1538190
12.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. London, Ser. A
,
230
, pp.
531
548
.10.1098/rspa.1955.0149
13.
Courtney-Pratt
,
J. S.
, and
Eisner
,
E.
,
1957
, “
The Effect of a Tangential Force on the Contact of Metallic Bodies
,”
Proc. R. Soc. London
,
238
, pp.
529
550
.10.1098/rspa.1957.0016
14.
Hills
,
D. A.
, and
Ashelby
,
D. W.
,
1979
, “
On the Application of Fracture Mechanics to Wear
,”
Wear
,
54
, pp.
321
330
.10.1016/0043-1648(79)90124-8
15.
Suh
,
N. P.
,
1973
, “
The Delamination Theory of Wear
,”
Wear
,
25
, pp.
111
135
.10.1016/0043-1648(73)90125-7
16.
Suh
,
N. P.
,
1977
, “
An Overview of the Delamination Theory of Wear
,”
Wear
,
44
, pp.
1
16
.10.1016/0043-1648(77)90081-3
17.
Jahanmir
,
S.
, and
Suh
,
N. P.
,
1977
, “
Mechanics of Subsurface Void Nucleation in Delamination Wear
,”
Wear
,
44
, pp.
17
38
.10.1016/0043-1648(77)90082-5
18.
Fleming
,
J. R.
, and
Suh
,
N. P.
,
1977
, “
Mechanics of Crack Propagation in Delamination Wear
,”
Wear
,
44
, pp.
39
56
.10.1016/0043-1648(77)90083-7
19.
Fleming
,
J. R.
, and
Suh
,
N. P.
,
1977
, “
The Relationship Between Crack Propagation Rates and Wear Rates
,”
Wear
,
44
, pp.
57
64
.10.1016/0043-1648(77)90084-9
20.
Ko
,
P. L.
,
Lyer
,
S. S.
,
Vaughan
,
H.
, and
Gadala
,
M.
,
2001
, “
Finite Element Modeling of Crack Growth and Wear Particle Formation in Sliding Contact
,”
Wear
,
251
, pp.
1265
1278
.10.1016/S0043-1648(01)00780-3
21.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Elastic-Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
, pp.
61
70
.10.1007/s11249-006-9156-y
22.
Wu
,
A.
,
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2012
, “
An Elastic-Plastic Spherical Contact Model Under Combined Normal and Tangential Loading
,”
Trans. ASME J. Appl. Mech.
,
79
, p.
051001
.10.1115/1.4006457
23.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
, pp.
2554
2567
.10.1016/j.ijsolstr.2010.05.017
24.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
44
, pp.
1
15
.10.1115/1.3443401
25.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
, pp.
389
407
.10.1007/BF00036191
26.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
, pp.
157
169
.10.1016/0001-6160(84)90213-X
27.
Besson
,
J.
,
Steglich
,
D.
, and
Brocks
,
W.
,
2001
, “
Modeling of Crack Growth in Round Bars and Plane Strain Specimens
,”
Int. J. Solids Struct.
,
38
, pp.
8259
8284
.10.1016/S0020-7683(01)00167-6
28.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
81
), pp.
81
98
.10.1016/j.ijmecsci.2004.02.006
29.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
,
126
, pp.
314
324
.10.1115/1.1755244
30.
Eringen
,
A. C.
,
1978
, “
Line Crack Subjected to Shear
,”
Int. J. Fract.
,
14
, pp.
367
379
.10.1007/BF00015990
31.
Bardet
,
J. P.
,
1990
, “
Lode Dependences for Isotropic Pressure-Sensitive Elastoplastic Materials
,”
Trans. ASME J. Appl. Mech.
,
57
, pp.
498
506
.10.1115/1.2897051
32.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y. W.
, and
Bai
,
Y.
,
2005
, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
,
47
, pp.
719
743
.10.1016/j.ijmecsci.2005.03.003
33.
Borvik
,
T.
,
Langseth
,
M.
,
Hopperstad
,
O. S.
, and
Malo
,
K. A.
,
1999
, “
Ballistic Penetration of Steel Plates
,”
Int. J. Impact Eng.
,
22
, pp.
855
886
.10.1016/S0734-743X(99)00011-1
34.
Nahshon
,
K.
,
Pontin
,
M. G.
,
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Zok
,
F. W.
,
2007
, “
Dynamic Shear Rupture of Steel Plates
,”
J. Mech. Mater. Struct.
,
2
(
10
), pp.
2049
2066
.10.2140/jomms.2007.2.2049
35.
ABAQUS
,
2010
, “
User's Manual and Theory Manual
,”
Hibbit, Karlsson & Sorenson
,
Providence, RI
, V6.10.
36.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
37.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
, pp.
981
988
.10.1063/1.1721448
38.
Archard
,
J. F.
, and
Hirst
,
W.
,
1958
, “
The Wear of Materials Under Unlubricated Conditions
,”
Proc. Roy. Soc. London, Ser. A
,
236
, pp.
397
410
.10.1098/rspa.1956.0144
39.
Erdogen
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME J. Basic Eng.
,
85
, pp.
519
527
.10.1115/1.3656897
40.
McClintock
,
F. A.
,
1968
, “
A Criterion of Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
, pp.
363
371
.10.1115/1.3601204
41.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
, pp.
201
217
.10.1016/0022-5096(69)90033-7
42.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
43.
Johnson
,
G. R.
, and
Holmquist
,
T. J.
,
1989
, “
Test Data and Computational Strength and Fracture Model Constants for 23 Materials Subjected to Large Strain, High Strain Rates, and High Temperature
,”
Los Alamos National Laboratory
, Technical Report No. LA-11463-MS.
44.
Hooputra
,
H.
,
Gese
,
H.
,
Dell
,
H.
, and
Werner
,
H.
,
2004
, “
A Comprehensive Failure Model for Crashworthiness Simulation of Aluminum Extrusions
,”
Int. J. Crashworthiness
,
9
(
5
), pp.
449
464
.10.1533/ijcr.2004.0289
45.
Xue
,
L.
,
2007
, “
Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading
,”
Int. J. Solids Struct.
,
44
, pp.
5163
5181
.10.1016/j.ijsolstr.2006.12.026
You do not currently have access to this content.