The classification of constraints in mechanics and the various mechanical principles that apply to different types of constraints constitute a major area of research in the field of theoretical and applied mechanics. The sudden introduction of bilateral constraints into a mechanical process is blocking and its sudden removal is releasing. The sudden introduction and removal of bilateral constraints, which exist in a subset of the whole process time span, may induce impacts. An impulsive action integral is proposed for such mechanical processes. The projectors of the tangent space of the submanifold and the cotangent space are derived and the equations of motion in different constrained submanifolds are obtained by making use of the projectors. The questions of the uniqueness and the existence of the post-transition velocity are addressed.

References

References
1.
Yunt
,
K.
,
2012
, “
The Impulsive Action Integral for Rigid-Body Mechanical Systems With Impacts
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031012
.10.1115/1.4006562
2.
Fetecau
,
R. C.
,
Marsden
,
J. E.
,
Ortiz
,
M.
, and
West
,
M.
,
2003
, “
Nonsmooth Lagrangian Mechanics and Variational Collision Integrators
,”
SIAM J. Appl. Dyn. Syst.
,
2
(
3
), pp.
381
416
.10.1137/S1111111102406038
3.
Sinitsyn
,
V. A.
,
1981
, “
On the Hamilton-Ostrogradskii Principle in the Case of Impulsive Motions of Dynamic Systems
,”
Prikl. Mat. Mekh.
,
45
(
3
), pp.
488
493
.10.1016/0021-8928(81)90066-6
4.
Panagiotopoulos
,
P.
, and
Glocker
,
C.
,
1998
, “
Analytical Mechanics: Addendum I. Inequality Constraints With Elastic Impacts. The Convex Case
,”
Z. Angew. Math. Mech.
,
78
(
4
), pp.
219
229
.10.1002/(SICI)1521-4001(199804)78:4<219::AID-ZAMM219>3.0.CO;2-V
5.
Panagiotopoulos
,
P.
, and
Glocker
,
C.
,
2000
, “
Inequality Constraints With Elastic Impacts in Deformable Bodies. The Convex Case
,”
Arch. Appl. Mech.
,
70
, pp.
349
365
.10.1007/s004199900067
6.
Kozlov
,
V. V.
, and
Treshchev
,
D. V.
,
1991
,
Billiards. A Genetic Introduction to the Dynamics of Systems With Impacts
,
American Mathematical Society
, Providence, RI.
7.
Leine
,
R. I.
,
Aeberhard
,
U.
, and
Glocker
,
C.
,
2009
, “
Hamilton's Principle as Variational Inequality for Mechanical Systems With Impact
,”
J. Nonlinear Sci.
,
19
, pp.
633
664
.10.1007/s00332-009-9048-z
8.
Painlevé
,
P.
,
1905
, “
Sur les lois du frottement de glissement
,”
C. R. Acad. Sci. Paris
,
121
, pp.
112
115
.
9.
Brogliato
,
B.
,
1999
,
Nonsmooth Mechanics: Models, Dynamics and Control
,
2nd ed.
(Communications and Control Engineering),
Springer
,
New York
.
10.
Glocker
,
C.
,
2001
,
Set-Valued Force Laws—Dynamics of Nonsmooth Systems
(Lecture Notes in Applied Mechanics, Vol.
1
),
Springer
,
New York
.
11.
Glocker
,
C.
,
1999
, “
Velocity Jumps Induced by c0-Constraints
,”
Proceedings of the 1999 ASME Design Engineering Tech. Conference, Las Vegas, NV, September 12–15, American Society of Mechanical Engineers (ASME)
,
New York
, pp.
1
9
.
12.
Brogliato
,
B.
,
2000
,
Impacts in Mechanical Systems: Analysis and Modelling
(Lecture Notes in Physics, Vol.
5
),
Springer
,
New York
, p.
551
.
13.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, England
.
14.
Bullo
,
F.
, and
Zefran
,
M.
,
2002
, “
Modeling and Controllability for a Class of Hybrid Mechanical Systems
,”
IEEE Trans. Rob. Autom.
,
18
, p.
2002
.10.1109/TRA.2002.802233
15.
Arai
,
H.
,
Kazuo
,
T.
, and
Susumu
,
T.
,
1993
, “
Dynamic Control of a Manipulator With Passive Joints in Operational Space
,”
IEEE Trans. Rob. Autom.
,
9
(
1
), pp.
85
93
.10.1109/70.210798
16.
Arai
,
H.
, and
Tachi
,
S.
,
1991
, “
Position Control of a Manipulator With Passive Joints Using Dynamic Coupling
,”
IEEE Trans. Rob. Autom.
,
7
, pp.
528
534
.10.1109/70.86082
17.
Buss
,
M.
,
Glocker
,
M.
,
Hardt
,
M.
,
von Stryk
,
O.
,
Bulirsch
,
R.
, and
Schmidt
,
G.
,
2002
, “
Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications
,”
Modelling, Analysis, and Design of Hybrid Systems
, (Lecture Notes in Control and Information Sciences, Vol.
279
),
S.
Engell
,
G.
Frehse
, and
E.
Schnieder
, eds.,
Springer
,
Berlin
, pp.
311
335
.
18.
Yunt
,
K.
, and
Glocker
,
C.
,
2006
, “
A Combined Continuation and Penalty Method for the Determination of Optimal Hybrid Mechanical Trajectories
,”
IUTAM Symposium on Dynamics and Control of Nonlinear Systems With Uncertainty (IUTAM Bookseries)
,
H.
Yu
and
E.
Kreuzer
, eds., Springer, Dordrecht, The Netherlands, pp.
187
196
.
19.
Yunt
,
K.
,
2011
, “
Modelling of Mechanical Blocking
,”
Seventh WSEAS Conference on Applied and Theoretical Mechanics
, Montreux, Switzerland, December 29–31, pp.
123
128
.
20.
Yunt
,
K.
,
2008
, “
Impulsive Optimal Control of Hybrid Finite-Dimensional Lagrangian Systems
,” Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich.
21.
Kolmogorov
,
A. N.
,
Fomine
,
S. V.
, and
Silverman
,
R. A.
, eds.,
1975
,
Introductory Real Analysis
(Dover Books on Advanced Mathematics),
Dover
,
New York
.
22.
Hartman
,
P.
, and
Stampacchia
,
G.
,
1966
, “
On Some Nonlinear Elliptic Differential Equations
,”
Acta Math.
,
115
(
1
), pp.
153
188
.10.1007/BF02392210
23.
Moreau
,
J. J.
,
1988
, “
Bounded Variation in Time
,”
Topics in Nonsmooth Mechanics
,
J. J.
Moreau
,
P. D.
Panagiotopoulos
, and
G.
Strang
, eds.,
Birkhäuser
, Basel, Switzerland, pp.
1
74
.
24.
Moreau
,
J. J.
1988
, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Nonsmooth Mechanics and Applications
, (CISM Courses and Lectures, Vol.
302
),
J. J.
Moreau
and
P. D.
Panagiotopoulos
, eds.,
Springer
,
New York
, pp.
1
82
.
25.
Aubin
,
J.-P.
, and
Frankowska
,
H.
,
1990
,
Set-Valued Analysis
, (Systems and Control: Foundations and Applications, Vol.
2
),
Birkhäuser
, Boston.
26.
Clarke
,
F.
,
1990
,
Optimization and Nonsmooth Analysis
, (Classics in Applied Mathematics, Vol.
5
),
SIAM
,
Philadelphia
.
27.
Rockafellar
,
R. T.
,
1979
, “
Directionally Lipschitzian Functions and Subdifferential Calculus
,”
Proc. London Math. Soc.
,
3
(
39
), pp.
331
355
.10.1112/plms/s3-39.2.331
28.
Rockafellar
,
R. T.
,
1980
, “
Generalized Directional Derivatives and Subgradients of Nonconvex Functions
,”
Can. J. Math.
,
2
, pp.
257
280
.10.4153/CJM-1980-020-7
29.
Rockafellar
,
R. T.
,
1985
, “
Extensions of Subgradient Calculus With Applications to Optimisation
,”
Nonlinear Anal. Theory, Methods Appl.
,
9
(
7
), pp.
665
698
.10.1016/0362-546X(85)90012-4
30.
Rockafellar
,
R. T.
, and
Wets
,
R. J.-B.
,
2004
,
Variational Analysis
,
Springer
,
New York
.
31.
Mordukhovich
,
B. S.
,
2006
,
Variational Analysis and Generalized Differentiation I
,
Springer
,
New York
.
32.
Troutman
,
J. L.
,
1996
,
Variational Calculus and Optimal Control
,
2nd ed.
,
Springer
,
New York
.
You do not currently have access to this content.