This paper presents a new approach for determining three-dimensional global displacement (for arbitrarily sized deformation) of thin rod or tetherlike structures from a limited set of scalar strain measurements. The approach is rooted in Cosserat rod theory with a material-adapted reference frame and a localized linearization approach that facilitates an exact local basis function set for the displacement along with the material frame. The solution set is shown to be robust to potential singularities from vanishing bending and twisting angle derivatives and from vanishing measured strain. Validation of the approach is performed through a comparison with both finite element simulations and an experiment, with average root mean square reconstruction error of 0.01%–1% of the total length, for reasonable sensor counts. An analysis of error due to extraneous noise sources and boundary condition uncertainty shows how the error scales with those effects. The algorithm involves relatively simple operations, the most complex of which is square matrix inversion, lending itself to potential low-power embeddable solutions for applications requiring shape reconstruction.

References

1.
Shield
,
R. T.
, and
Im
,
S.
,
1986
, “
Small Strain Deformations of Elastic Beams and Rods Including Large Deformations
,”
ZAMP
,
37
, pp.
491
513
.10.1007/BF00945427
2.
Love
,
A. E. H.
,
1944
,
A Treatise on Mathematical Theory of Elasticity
, 4th ed., reprinted by
Dover
,
New York
.
3.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Theorie des Corps Deformables
,
Herman
,
Paris
.
4.
Reisner
,
E.
,
1981
, “
On Finite Deformations of Space-Curved Beams
,”
ZAMP
,
32
, pp.
734
744
.10.1007/BF00946983
5.
Spillmann
,
J.
, and
Teschner
,
M.
,
2009
, “
Cosserat Nets
,”
IEEE Trans. Vis. Comput. Graph.
,
15
(
2
), pp.
325
338
.10.1109/TVCG.2008.102
6.
Chang
,
J.
,
Shepherd
,
D. X.
, and
Zhang
,
J. J.
,
2007
, “
Cosserat-Beam-Based Dynamic Response Modeling
,”
Comput. Animat. Virt. Worlds
,
18
, pp.
429
436
.10.1002/cav.197
7.
Pai
,
D.
,
2002
, “
STRANDS: Interactive of Thin Solids Using Cosserat Models
,”
Comput. Graph. Forum
,
21
(
3
), pp.
347
352
.10.1111/1467-8659.00594
8.
Langer
,
J.
, and
Singer
,
D.
,
1996
, “
Lagrangian Aspects of the Kirchhoff Elastic Rod
,”
SIAM Rev.
,
38
(
4
), pp.
605
618
.10.1137/S0036144593253290
9.
Lawton
,
W.
,
Raghavan
,
R.
,
Ranjan
,
S. R.
, and
Viswanathan
,
R.
,
1999
, “
Ribbons and Groups: A Thin Rod Theory for Catheters and Filaments
,”
J. Physics A: Math. Theor.
,
32
, pp.
1709
1735
.10.1088/0305-4470/32/9/017
10.
Cao
,
D. Q.
,
Liu
,
D.
, and
Wang
,
C. H.-T.
,
2005
, “
Nonlinear Dynamic Modeling for MEMS Components via the Cosserat Rod Element Approach
,”
J. Micromech. Microeng.
,
15
, pp.
1334
1343
.10.1088/0960-1317/15/6/027
11.
Yang
,
T. Y.
,
1973
, “
Matrix Displacement Solution to Elastical Problems of Beams and Frames
,”
Int. J. Solids Struct.
,
9
, pp.
829
842
.10.1016/0020-7683(73)90006-1
12.
Kawakubo
,
S.
, “
Kirchoff Elastic Rods in Three-Dimensional Space Forms
,”
J. Math. Soc. Jpn.
,
60
(
2
), pp.
551
582
.10.2969/jmsj/06020551
13.
Bishop
,
R. L.
,
1975
, “
There is More Than One Way to Frame a Curve
,”
Am. Math. Monthly
,
82
(
3
), pp.
246
251
.10.2307/2319846
14.
Todd
,
M. D.
,
Mascarenas
,
D.
,
Overbey
,
L. A.
,
Salter
,
T.
,
Baldwin
,
C.
, and
Kiddy
,
J.
,
2005
, “
Towards Deployment of a Fiber Optic Smart Tether for Relative Localization of Towed Bodies
,”
Proceedings of the SEM Annual Conference on Experimental Mechanics
,
Portland, OR
,
June 6–9
.
15.
Friedman
,
A.
,
Todd
,
M. D.
,
Kirkendall
,
K.
,
Tveten
,
A.
, and
Dandridge
,
A.
,
2003
, “
Rayleigh Backscatter-Based Fiber Optic Distributed Strain Sensor With Tunable Gage Length
,”
SPIE Smart Structures/NDE 5050 Proceedings
,
San Diego, CA
,
March 2–6
.
16.
Duncan
,
R.
,
Froggatt
,
M.
,
Kreger
,
S.
,
Seeley
,
R.
,
Gifford
,
D.
,
Sang
,
A.
, and
Wolfe
,
M.
,
2007
, “
High-Accuracy Fiber Optic Shape Sensing
,”
SPIE Smart Structures/NDE 6530 Proceedings
,
San Diego, CA
,
March 19–22
.
You do not currently have access to this content.