For the frequency response analysis of the structural-acoustic system with interval parameters, a modified interval perturbation finite element method (MIPFEM) is proposed. In the proposed method, the interval dynamic equilibrium equation of the uncertain structural-acoustic system is established. The interval structural-acoustic dynamic stiffness matrix and the interval force vector are expanded by using the first-order Taylor series; the inversion of the invertible interval structural-acoustic dynamic stiffness matrix is approximated by employing a modified approximate interval-value Sherman–Morrison–Woodbury formula. The proposed method is implemented at an element-by-element level in the finite element framework. Numerical results on a shell structural-acoustic system with interval parameters verify the accuracy and efficiency of the proposed method.

References

References
1.
Moens
,
D.
, and
Vandepitte
,
D.
,
2006
, “
Recent Advances in Non-Probabilistic Approaches for Non-Deterministic Dynamic Finite Element Analysis
,”
Arch. Comput. Methods Eng.
,
13
(
3
), pp.
389
464
.10.1007/BF02736398
2.
Naess
,
A.
, and
Gaidai
,
O.
,
2008
, “
Monte Carlo Methods for Estimating the Extreme Response of Dynamical Systems
,”
ASCE J. Eng. Mech.
,
134
(
8
), pp.
628
636
.10.1061/(ASCE)0733-9399(2008)134:8(628)
3.
Figiel
,
L.
, and
Kamiński
,
M.
,
2009
, “
Numerical Probabilistic Approach to Sensitivity Analysis in a Fatigue Delamination Problem of a Two Layer Composite
,”
Appl. Math. Comput.
,
209
(
1
), pp.
75
90
.10.1016/j.amc.2008.06.039
4.
Kamiński
,
M. M.
,
2010
, “
A Generalized Stochastic Perturbation Technique for Plasticity Problems
,”
Comput. Mech.
,
45
(
4
), pp.
349
361
.10.1007/s00466-009-0455-7
5.
Kamiński
,
M.
,
2010
, “
Potential Problems With Random Parameters by the Generalized Perturbation-Based Stochastic Finite Element Method
,”
Comput. Struct.
,
88
(
7–8
) pp.
437
445
.10.1016/j.compstruc.2009.12.005
6.
Chen
,
N. Z.
, and
Soares
,
C. G.
,
2008
, “
Spectral Stochastic Finite Element Analysis for Laminated Composite Plates
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
51–52
), pp.
4830
4839
.10.1016/j.cma.2008.07.003
7.
Nouy
,
A.
,
2008
, “
Generalized Spectral Decomposition Method for Solving Stochastic Finite Element Equations: Invariant Subspace Problem and Dedicated Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
51–52
), pp.
4718
4736
.10.1016/j.cma.2008.06.012
8.
Adhikari
,
S.
,
2011
, “
Doubly Spectral Stochastic Finite-Element Method for Linear Structural Dynamics
,”
ASCE J. Aerospace Eng.
,
24
(
3
), pp.
264
276
.10.1061/(ASCE)AS.1943-5525.0000070
9.
Yuen
,
K. V.
,
2010
, “
Recent Developments of Bayesian Model Class Selection and Applications in Civil Engineering
,”
Struct. Saf.
32
(
5
), pp.
338
346
.10.1016/j.strusafe.2010.03.011
10.
Haukaas
,
T.
, and
Gardoni
,
P.
,
2011
, “
Model Uncertainty in Finite-Element Analysis: Bayesian Finite Elements
,”
ASCE J. Eng. Mech.
,
137
(
8
), pp.
519
526
.10.1061/(ASCE)EM.1943-7889.0000253
11.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
1990
,
Convex Models of Uncertainty in Applied Mechanics
,
Elsevier Science Publishers
,
Amsterdam, The Netherlands
.
12.
Pantelides
,
C. P.
, and
Ganzerli
,
S.
,
1998
, “
Design of Trusses Under Uncertain Loads Using Convex Models
,”
ASCE J. Struct. Eng.
,
124
(
3
), pp.
318
329
.10.1061/(ASCE)0733-9445(1998)124:3(318)
13.
Jiang
,
C.
,
Han
,
X.
, and
Liu
,
G. R.
,
2007
, “
Optimization of Structures With Uncertain Constraints Based on Convex Model and Satisfaction Degree of Interval
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
49–52
), pp.
4791
4800
.10.1016/j.cma.2007.03.024
14.
Qiu
,
Z. P.
,
Ma
,
L. H.
, and
Wang
,
X. J.
,
2009
, “
Unified Form for Static Displacement, Dynamic Response and Natural Frequency Analysis Based on Convex Models
,”
Appl. Math. Model.
,
33
(
10
), pp.
3836
3847
.10.1016/j.apm.2009.01.001
15.
Kang
,
Z.
, and
Luo
,
Y. J.
,
2009
, “
Non-Probabilistic Reliability-Based Topology Optimization of Geometrically Nonlinear Structures Using Convex Models
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
41–44
), pp.
3228
3238
.10.1016/j.cma.2009.06.001
16.
Köylüoglu
,
H. U.
,
Çakmak
,
A. S.
, and
Nielsen
,
S. R. K.
,
1995
, “
Interval Algebra to Deal With Pattern Loading and Structural Uncertainties
,”
ASCE J. Eng. Mech.
,
121
(
1
), pp.
1149
1157
.10.1061/(ASCE)0733-9399(1995)121:11(1149)
17.
McWilliam
,
S.
,
2001
, “
Anti-Optimization of Uncertain Structures Using Interval Analysis
,”
Comput. Struct.
,
79
(
4
), pp.
421
430
.10.1016/S0045-7949(00)00143-7
18.
Moens
,
D.
, and
Vandepitte
,
D.
,
2005
, “
A Survey of Non-Probabilistic Uncertainty Treatment in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–18
), pp.
1527
1555
.10.1016/j.cma.2004.03.019
19.
Wang
,
X. J.
,
Elishakoff
,
I.
, and
Qiu
,
Z. P.
,
2008
, “
Experimental Data Have to Decide Which of the Nonprobabilistic Uncertainty Descriptions—Convex Modeling or Interval Analysis—to Utilize
,”
ASME J. Appl. Mech.
,
75
(
4
), p.
041018
.10.1115/1.2912988
20.
Wang
,
X. J.
,
Elishakoff
,
I.
,
Qiu
,
Z. P.
, and
Ma
,
L. H.
,
2009
, “
Comparisons of Probabilistic and Two Nonprobabilistic Methods for Uncertain Imperfection Sensitivity of a Column on a Nonlinear Mixed Quadratic-Cubic Foundation
,”
ASME J. Appl. Mech.
,
76
(
1
), p.
011007
.10.1115/1.2998763
21.
Worden
,
K.
,
1998
, “
Confidence Bounds for Frequency Response Functions From Time Series Models
,”
Mech. Syst. Signal Process.
,
12
(
4
), pp.
559
569
.10.1006/mssp.1998.0156
22.
Qiu
,
Z. P.
,
Chen
,
S. H.
, and
Elishakoff
,
I.
,
1996
, “
Bounds of Eigenvalues for Structures With an Interval Description of Uncertain-But-Non-Random Parameters
,”
Chaos Soliton Fract.
,
7
(
3
), pp.
425
434
.10.1016/0960-0779(95)00065-8
23.
Qiu
,
Z. P.
, and
Elishakoff
,
I.
,
1998
, “
Antioptimization of Structures With Large Uncertain-But-Non-Random Parameters via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp.
361
372
.10.1016/S0045-7825(96)01211-X
24.
Zhou
,
Y. T.
,
Jiang
,
C.
, and
Han
,
X.
,
2006
, “
Interval and Subinterval Analysis Methods of the Structural Analysis and Their Error Estimations
,”
Int. J. Comput. Methods
,
3
(
2
), pp.
229
244
.10.1142/S0219876206000771
25.
Chen
,
S. H.
,
Ma
,
L.
,
Meng
,
G. W.
, and
Guo
,
R.
,
2009
, “
An Efficient Method for Evaluating the Natural Frequency of Structures With Uncertain-But-Bounded Parameters
,”
Comput. Struct.
,
87
(
9–10
), pp.
582
590
.10.1016/j.compstruc.2009.02.009
26.
Fujita
,
K.
, and
Takewaki
,
I.
,
2011
, “
An Efficient Methodology for Robustness Evaluation by Advanced Interval Analysis Using Updated Second-Order Taylor Series Expansion
,”
Eng. Struct.
,
33
(
12
), pp.
3299
3310
.10.1016/j.engstruct.2011.08.029
27.
Impollonia
,
N.
,
2006
, “
A Method to Derive Approximate Explicit Solutions for Structural Mechanics Problems
,”
Int. J. Solids Struct.
43
(
22–23
), pp.
7082
7098
.10.1016/j.ijsolstr.2006.03.003
28.
Impollonia
,
N.
, and
Muscolino
,
G.
,
2011
, “
Interval Analysis of Structures With Uncertain-But-Bounded Axial Stiffness
,”
Comput. Methods Appl. Mech. Eng.
220
(
21–22
), pp.
1945
1962
.10.1016/j.cma.2010.07.019
29.
Qiu
,
Z. P.
, and
Wang
,
X. J.
,
2005
, “
Parameter Perturbation Method for Dynamic Responses of Structures With Uncertain-But-Bounded Parameters Based on Interval Analysis
,”
Int. J. Solids Struct.
,
42
(
18–19
), pp.
4958
4970
.10.1016/j.ijsolstr.2005.02.023
30.
Zhang
,
X. M.
,
Ding
,
H.
, and
Chen
,
S. H.
,
2007
, “
Interval Finite Element Method for Dynamic Response of Closed-Loop System With Uncertain Parameters
,”
Int. J. Numer. Meth. Eng.
,
70
(
5
), pp.
543
562
.10.1002/nme.1891
31.
Sliva
,
G.
,
Brezillon
,
A.
,
Cadou
,
J. M.
, and
Duigou
,
L.
,
2010
, “
A Study of the Eigenvalue Sensitivity by Homotopy and Perturbation Methods
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2297
2302
.10.1016/j.cam.2009.08.086
32.
Rong
,
B.
,
Rui
,
X. T.
, and
Tao
,
L.
,
2012
, “
Perturbation Finite Element Transfer Matrix Method for Random Eigenvalue Problems of Uncertain Structures
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
011007
.10.1115/1.4005574
33.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elem. Anal. Des.
,
47
(
1
), pp.
4
16
.10.1016/j.finel.2010.07.010
34.
Ohayon
,
R.
, and
Soize
,
C.
,
1998
,
Structural Acoustics and Vibration: Mechanical Models, Variational Formulations and Discretization
,
Academic Press
,
San Diego, CA
.
You do not currently have access to this content.