This paper deals with finding Lagrangians for damped, linear multi-degree-of-freedom systems. New results for such systems are obtained using extensions of the results for single and two degree-of-freedom systems. The solution to the inverse problem for an n-degree-of-freedom linear gyroscopic system is obtained as a special case. Multi-degree-of-freedom systems that commonly arise in linear vibration theory with symmetric mass, damping, and stiffness matrices are similarly handled in a simple manner. Conservation laws for these damped multi-degree-of-freedom systems are found using the Lagrangians obtained and several examples are provided.

References

References
1.
Bolza
,
O.
,
1931
,
Vorlesungen über Varationsrechnung
,
Koehler und Amelang
,
Leipzig, Germany
.
2.
Leitmann
,
G.
,
1963
, “
Some Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
30
, pp.
623
625
.10.1115/1.3636630
3.
Udwadia
,
F. E.
,
Leitmann
,
G.
, and
Cho
,
H.
,
2011
, “
Some Further Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
78
, p.
011014
.10.1115/1.4002435
4.
He
,
J.-H.
,
2004
, “
Variational Principles for Some Nonlinear Partial Differential Equations With Variable Coefficients
,”
Chaos, Solitons Fractals
,
19
, pp.
847
851
.10.1016/S0960-0779(03)00265-0
5.
Darboux
,
G.
,
1894
,
Leçons sur la Théorie Générale des Surfaces
, Vol.
3
,
Gauthier-Villars
,
Paris
.
6.
Helmholtz
,
H. v.
,
1887
, “
Uber die physikalische Bedeutung des Princips der kleinsten Wirkung
,”
J. Reine Angew. Math.
,
100
, pp.
137
166
.
7.
Santilli
,
R. M.
,
1978
,
Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics
,
Springer-Verlag
,
New York
, pp.
110
111
and 131–132.
8.
Douglas
,
J.
,
1941
, “
Solution of the Inverse Problem of the Calculus of Variations
,”
Trans. Am. Math. Soc.
,
50
, pp.
71
128
.10.1090/S0002-9947-1941-0004740-5
9.
Hojman
,
S.
and
Ramos
,
S.
,
1982
, “
Two-Dimensional s-Equivalent Lagrangians and Separability
,”
J. Phys. A
,
15
, pp.
3475
3480
.10.1088/0305-4470/15/11/024
10.
Mestdag
,
T.
,
Sarlet
,
W.
, and
Crampin
,
M.
,
2011
, “
The Inverse Problem for Lagrangian Systems With Certain Non-Conservative Forces
,”
Diff. Geom. Applic.
,
29
,
2011
, pp.
55
72
.10.1016/j.difgeo.2010.11.002
11.
Ray
,
J. R.
,
1979
, “
Lagrangians and Systems They Describe—How Not to Treat Dissipation in Quantum Mechanics
,”
Am. J. Phys.
,
47
, pp.
626
629
.10.1119/1.11767
12.
Pars
,
L. A.
,
1972
,
A Treatise on Analytical Dynamics
,
Ox Bow
, Woodbridge, CT, p.
82
.
You do not currently have access to this content.