A simple analytical theory is proposed for estimating the number of radial cracks which will propagate in brittle materials subjected to axisymmetric transverse surface loads. First, an expression is obtained for the stress intensity factor of a traction-free star-shaped crack in an infinite elastic membrane subjected to axisymmetric transverse loads. Combining this relation with the critical stress intensity factor criterion for fracture, an implicit expression is obtained which defines the number of cracks as a function of the applied loading, initial flaw size, and fracture toughness. Based on the form of this expression, we argue that if the initial flaw size is sufficiently small compared to the length scale associated with the loading, then the number of cracks can be determined approximately in closed-form from the analysis of a traction-free star-shaped crack in a thin body subjected to uniform equibiaxial in-plane tension. In an attempt to validate the theory, comparisons are made with spherical micro-indentation experiments of silicon carbide (Wereszczak and Johanns, 2008, “Spherical Indentation of SiC,” Advances in Ceramic Armor II, Wiley, NY, Chap. 4) and good agreement is obtained for the number of radial cracks as a function of indentation load.

References

1.
Wereszczak
,
A.
, and
Johanns
,
K.
,
2008
, “
Spherical Indentation of SiC
,”
Advances in Ceramic Armor II
,
Wiley
,
New York
, Chap. 4.
2.
Subhash
,
G.
,
Maiti
,
S.
,
Geubelle
,
P. H.
, and
Ghosh
,
D.
,
2008
, “
Recent Advances in Dynamic Indentation Fracture, Impact Damage and Fragmentation of Ceramics
,”
J. Am. Ceram. Soc.
,
91
(
9
), pp.
2777
2791
.10.1111/j.1551-2916.2008.02624.x
3.
Sherman
,
D.
, and
Ben-Shushan
,
T.
,
1998
, “
Quasi-Static Impact Damage in Confined Ceramic Tiles
,”
Int. J. Impact Eng.
,
21
, pp.
245
265
.10.1016/S0734-743X(97)00063-8
4.
Sherman
,
D.
,
2000
, “
Impact Failure Mechanisms in Alumina Tiles on Finite Thickness Support and the Effect of Confinement
,”
Int. J. Impact Eng.
,
24
, pp.
313
328
.10.1016/S0734-743X(99)00147-5
5.
Iyer
,
K.
,
2007
, “
Relationships Between Multiaxial Stress States and Internal Fracture Patterns in Sphere-Impacted Silicon Carbide
,”
Int. J. Fracture
,
146
, pp.
1
18
.10.1007/s10704-007-9108-z
6.
Camacho
,
G.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20-22
), pp.
2899
2938
.10.1016/0020-7683(95)00255-3
7.
Wei
,
Z.
,
Deshpande
,
V.
, and
Evans
,
A.
,
2009
, “
The Influence of Material Properties and Confinement on the Dynamic Penetration of Alumina by Hard Spheres
,”
J. Appl. Mech.
,
76
, pp.
1
8
.10.1115/1.3129765
8.
Leavy
,
R.
,
Brannon
,
R.
, and
Strack
,
O.
,
2010
, “
The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models
,”
Int. J. Appl. Ceram. Technol.
,
7
(
5
), pp.
606
615
.10.1111/j.1744-7402.2010.02487.x
9.
Radovitzky
,
R.
,
Seagraves
,
A.
,
Tupek
,
M.
, and
Noels
,
L.
,
2011
, “
A Scalable 3D Fracture and Fragmentation Algorithm Based on a Hybrid, Discontinuous Galerkin, Cohesive Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
326
344
.10.1016/j.cma.2010.08.014
10.
Seagraves
,
A.
, and
Radovitzky
,
R.
,
2009
, “
Advances in Cohesive Zone Modeling of Dynamic Fracture
,”
Dynamic Failure of Materials and Structures
,
Springer
,
New York
, pp.
349
405
.
11.
Westmann
,
R.
,
1964
, “
Pressurized Star Crack
,”
J. Math. Phys.
,
43
, pp.
191
195
.
12.
Williams
,
W.
,
1971
, “
A Star-Shaped Crack Deformed by an Arbitrary Internal Pressure
,”
Int. J. Eng. Sci.
,
9
, pp.
705
712
.10.1016/0020-7225(71)90088-7
13.
Ouchterlony
,
F.
,
1976
, “
Stress Intensity Factors for the Expansion Loaded Star Crack
,”
Eng. Fract. Mech.
,
8
, pp.
447
448
.10.1016/0013-7944(76)90026-6
14.
Bacci
,
A.
,
1998
, “
Radial Cracks in a Sheet Weakened by a Pressurized Circular Hole
,”
Meccanica
,
33
, pp.
533
540
.10.1023/A:1004378901689
15.
Sih
,
G.
, and
Irwin
,
G.
,
1970
, “
Dynamic Analysis for Two-Dimensional Multiple Crack Division
,”
Eng. Fract. Mech.
,
1
, pp.
603
614
.10.1016/0013-7944(70)90002-0
16.
Rassoulova
,
N.
,
2010
, “
The Propagation of Star-Shaped Brittle Cracks
,”
J. Appl. Mech.
,
77
(
4
), p.
044502
.10.1115/1.4000900
17.
Nakasa
,
K.
, and
Nakatsuka
,
J.
,
1991
, “
Crack Initiation, Propagation and Branching in a Disk of Brittle Material Under Axisymmetric Tension
,”
Eng. Fract. Mech.
,
39
, pp.
661
670
.10.1016/0013-7944(91)90216-N
18.
Lawn
,
B.
,
1993
,
Fracture of Brittle Solids
, 2nd ed.,
Cambridge Solid State Science Series, Cambridge University Press
,
Cambridge
, UK.
19.
Clements
,
D.
, and
Widana
,
N.
,
2003
, “
An Approximate Formula for the Stress Intensity Factor for the Pressurized Star Crack
,”
Math. Comput. Modell.
,
37
, pp.
689
694
.10.1016/S0895-7177(03)00072-4
20.
Johnson
,
K.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Kikuchi
,
H.
,
Kalia
,
R.
,
Nakano
,
A.
,
Vashishta
,
P.
,
Brancio
,
P.
, and
Shimojo
,
F.
,
2005
, “
Brittle Dynamic Fracture of Crystalline Cubic Silicon Carbide (3C-SiC) via Molecular Dynamics Simulation
,”
J. Appl. Phys.
,
98
, p.
103524
.10.1063/1.2135896
22.
Vargas-Gonzalez
,
L.
, and
Speyer
,
R. F.
,
2010
, “
Flexural Strength, Fracture Toughness, and Hardness of Silicon Carbide and Boron Carbide Armor Ceramics
,”
Int. J. Appl. Ceram. Tech.
,
7
(
5
), pp.
643
651
.10.1111/j.1744-7402.2010.02501.x
You do not currently have access to this content.