Recent developments in directed photocuring of polymers have enabled fabrication of periodic lattice structures with highly tailorable geometries. The present study addresses the mechanics of compressive deformation of such structures with emphasis on the effects of strut slenderness L/D, strut inclination angle θ, and number of repeat lattice layers N. We present analytic models and finite element calculations for a broad parameter space and identify designs that yield desirable combinations of specific strength and energy absorption. The optimal designs (those for which crushing occurs at nearly constant compressive stress) are found to be those in which there is only one pyramidal layer, the inclination angle is of intermediate value (θ = 50 deg) and the strut slenderness ratio falls below a critical value, typically L/D=4. The performance of near-optimal structures is attributable to the balance between two competing processes during plastic deformation: (i) geometric hardening associated with lateral expansion of the nodes and the struts, and (ii) geometric softening arising from the corresponding reduction in strut angle. Comparisons with stochastic foams show that the lattice structures can be designed to attain levels of energy absorption not possible by foams (by factors of 3–5 on a mass basis), albeit at higher stress levels than those required for crushing foams.

References

References
1.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
S.
,
2007
, “
Micro-Scale Truss Structures Formed From Self-Propagating Photopolymer Waveguides
,”
Adv. Mater.
,
19
(
22
), pp.
3892
3896
.10.1002/adma.200700797
2.
Gibson
L. J.
, and
Ashby
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, MA
.
3.
Wadley
H. N. G.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. T. Roy. Soc. A
,
364
(
1838
), pp.
31
68
.10.1098/rsta.2005.1697
4.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solid.
,
49
, pp.
1747
1769
.10.1016/S0022-5096(01)00010-2
5.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
S.
,
2008
, “
Micro-Scale Truss Structures With Three-Fold and Six-Fold Symmetry Formed From Self-Propagating Polymer Waveguides
,”
Acta Mater.
,
56
, pp.
2540
2548
.10.1016/j.actamat.2008.01.051
6.
Jacobsen
,
A. J.
,
Mahoney
,
S.
,
Carter
,
W. B.
, and
Nutt
S.
,
2011
, “
Vitreous Carbon Micro-Lattice Structures
,”
Carbon
,
49
(
3
), pp.
1025
1032
.10.1016/j.carbon.2010.10.059
7.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.10.1126/science.1211649
8.
Queheillalt
,
D. T.
,
Murty
,
Y.
, and
Wadley
H. N. G.
,
2008
, “
Mechanical Properties of an Extruded Pyramidal Lattice Truss Sandwich Structure
,”
Scripta Mater.
,
58
(
1
), pp.
76
79
.10.1016/j.scriptamat.2007.08.041
9.
Kooistra
,
G. W.
,
Deshpande
,
V. S.
, and
Wadley
H. N. G.
,
2004
, “
Compressive Behavior of Age Hardenable Tetrahedral Lattice Truss Structures Made From Aluminium
,”
Acta Mater.
,
52
(
14
), pp.
4229
4237
.10.1016/j.actamat.2004.05.039
10.
Rinaldi
,
R. G.
,
Bernal-Ostos
,
J.
,
Hammetter
,
C. I.
,
Jacobsen
,
A. J.
, and
Zok
F. W.
,
2012
, “
Effects of Material Heterogeneities on the Compressive Response of Thiol-ene Pyramidal Lattices
,”
J. Mater. Sci.
,
47
(18)
, pp.
6621
6632
.10.1007/s10853-012-6598-5
11.
Bernal-Ostos
,
J.
,
Rinaldi
,
R. G.
,
Hammetter
,
C. I.
,
Stucky
,
G. D.
,
Zok
,
F. W.
, and
Jacobsen
,
A. J.
,
2012
, “
Deformation Stabilization of Lattice Structures Via Foam Addition
,”
Acta Mater.
,
60
(19)
, pp.
6476
6485
.10.1016/j.actamat.2012.07.053
12.
Deshpande
,
V. S.
, and
Fleck
N. A.
,
2001
, “
Collapse of Truss Core Sandwich Beams in 3-Point Bending
,”
Int. J. Solid. Struct.
,
38
(
36-37
), pp.
6275
6305
.10.1016/S0020-7683(01)00103-2
13.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
S.
,
2007
, “
Compression Behavior of Micro-Scale Truss Structures Formed From Self-Propagating Polymer Waveguides
,”
Acta Mater.
,
55
(
20
), pp.
6724
6733
.10.1016/j.actamat.2007.08.036
14.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
N. A.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.10.1016/S1359-6454(00)00379-7
15.
Alkhader
,
M.
, and
Vural
M.
,
2008
, “
Mechanical Response of Cellular Solids: Role of Cellular Topology and Microstructural Irregularity
,”
Int. J. Eng. Sci.
,
46
(
10
), pp.
1035
1051
.10.1016/j.ijengsci.2008.03.012
16.
Alkhader
,
M.
, and
Vural
M.
,
2009
, “
The Partition of Elastic Strain Energy in Solid Foams and Lattice Structures
,”
Acta Mater.
,
57
(
8
), pp.
2429
2439
.10.1016/j.actamat.2009.01.034
17.
Abaqus FEA
,
2009
, Abaqus Analysis User's Manual, Dassault Systèmes Simulia Corp., Providence, RI.
18.
Tan
,
P. J.
,
Harrigan
,
J. J.
, and
Reid
S. R.
,
2002
, “
Inertia Effects in Uniaxial Dynamic Compression of a Closed Cell Aluminium Alloy Foam
,”
Mater. Sci. Tech.
,
18
(
5
), pp.
480
488
.10.1179/026708302225002092
You do not currently have access to this content.