We propose a new method for finding solution of Bagley–Torvik equation based on recently derived expansion formula for fractional derivatives. The case of nonlinear equations of Bagley–Torvik type is also discussed.

References

References
1.
Torvik
,
P. J.
, and
Bagley
R. L.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME Trans. J. Appl. Mech.
51
, pp.
294
298
.10.1115/1.3167615
2.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives
,
Gordon and Breach Science Publishers
,
Amsterdam
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
4.
Saha Ray
,
S.
,
2012
, “
On Haar Wavelet Operational Matrix of General Order and Its Application for the Numerical Solution of Fractional Bagley-Torvik Equation
,”
Appl. Math. Comput.
,
218
, pp.
5239
5248
.10.1016/j.amc.2011.11.007
5.
Li
,
Y.
, and
Zhao
,
W.
,
2010
, “
Haar Wavelet Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations
,”
Appl. Math. Comput.
,
216
, pp.
2276
2285
.10.1016/j.amc.2010.03.063
6.
Raja
,
M. A. Z.
,
Khan
,
J. A.
, and
Qureshi
,
I. M.
,
2011
, “
Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence
,”
Math Probl. Eng.
,
2011
, p.
675075
.10.1155/2011/675075
7.
Qasem
,
M.
,
Al-Mdallal
,
Q. M.
,
Syam
,
M. I.
, and
Anwar
,
M. N.
,
2010
, “
A Collocation-Shooting Method for Solving Fractional Boundary Value Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
3814
3822
.10.1016/j.cnsns.2010.01.020
8.
Wanga
,
Z. H.
, and
Wang
,
X.
,
2010
, “
General Solution of the Bagley-Torvik Equation With Fractional-Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
1279
1285
.10.1016/j.cnsns.2009.05.069
9.
Zolfaghari
,
M.
,
Ghaderi
,
R.
,
Sheikhol-Eslami
,
A.
,
Ranjbar
,
A.
,
Hosseinnia
,
S. H.
,
Momani
,
S.
, and
Sadati
,
J.
,
2009
, “
Application of the Enhanced Homotopy Perturbation Method to Solve the Fractional-Order Bagley-Torvik Differential Equation
,”
Phys. Scr.
,
2009
(T136)
, p.
014032
.10.1088/0031-8949/2009/T136/014032
10.
Ray
,
S. S.
, and
Bera
,
R. K.
,
2005
, “
Analytical Solution of the Bagley-Torvik Equation by Adomian Decomposition Method
,”
Appl. Math. Comput.
,
168
, pp.
398
410
.10.1016/j.amc.2004.09.006
11.
Diethelm
,
K.
,
2010
, “
The Analysis of Fractional Differential Equations
,”
Lecture Notes in Mathematics 2004
,
Springer
,
Berlin
.
12.
Diethelm
,
K.
, and
Ford
,
J.
,
2002
, “
Numerical Solution of the Bagley-Torvik Equation
,”
BIT
,
42
, pp.
490
507
.10.1023/A:1021973025166
13.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
,
2004
, “
An Expansion Formula for Fractional Derivatives and its Applications
,”
Fractional Calculus Appl. Anal.
,
7
, pp.
365
378
. Available at http://hdl.handle.net/10525/1232
14.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
,
2008
, “
On a Numerical Scheme for Solving Differential Equations of Fractional Order
,”
Mech. Res. Commun.
,
35
, pp.
429
438
.10.1016/j.mechrescom.2008.05.003
15.
Djordjevic
,
V. D.
, and
Atanackovic
,
T. M.
,
2008
, “
Similarity Solutions to Nonlinear Heat Conduction and Burgers/Korteweg-de Vries Fractional Equations
,”
J. Comput. Appl. Math
222
, pp.
701
714
.10.1016/j.cam.2007.12.013
16.
Yuan
,
L.
, and
Agrawal
,
O. P.
,
1998
, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
Proceedings of DETC’98, ASME Design Engineering Technical Conferences
, September 13–16,
Atlanta, GA
.
17.
Yuan
,
L.
, and
Agrawal
,
O. P.
,
2002
, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vib. Acoust.
,
124
, pp.
321
324
.10.1115/1.1448322
18.
Atanackovic
,
T. M.
,
Pilipovic
,
S.
, and
Stankovic
,
B.
,
2012
, Equations of the Forced Linear Oscillator With Fractional Damping (unsubmitted manuscript).
19.
Çenesiz
,
Y.
,
Keskin
,
Y.
, and
Kurnaz
,
A.
,
2010
, “
The Solution of the Bagley-Torvik Equation With the Generalized Taylor Collocation Method
,”
J. Franklin Inst.
,
347
, pp.
452
466
.10.1016/j.jfranklin.2009.10.007
You do not currently have access to this content.