The problem of evaluating potential integrals on planar triangular elements has been addressed using a polar coordinate decomposition, giving explicit formulae for the regular and for the principal value and finite part integrals used in hypersingular formulations. The resulting formulae are general, exact, easily implemented, and have only one special case, that of a field point lying in the plane of the element. Results are presented for the evaluation of the potential and its gradients, where the integrals must be treated as principal values or finite parts, for elements with constant and linearly varying source terms. These results are tested by application to a single triangular element, and to the evaluation of a potential gradient outside the unit cube. In both cases, the method is shown to be accurate and convergent.

References

1.
Newman
,
J. N.
,
1986
, “
Distributions of Sources and Normal Dipoles Over a Quadrilateral Panel
,”
J. Eng. Math.
,
20
, pp.
113
126
.10.1007/BF00042771
2.
Guiggiani
,
M.
, and
Gigante
,
A.
,
1990
, “
A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method
,”
ASME J. Appl. Mech.
,
57
, pp.
906
915
.10.1115/1.2897660
3.
Telles
,
J. C. F.
,
1987
, “
A Self-Adaptive Co-Ordinate Transformation for Efficient Numerical Evaluation of General Boundary Element Integrals
,”
Int. J. Numer. Methods Eng.
,
24
, pp.
959
973
.10.1002/nme.1620240509
4.
Hayami
,
K.
, and
Matsumoto
,
H.
,
1994
, “
A Numerical Quadrature for Nearly Singular Boundary Element Integrals
,”
Eng. Anal. Boundary Elem.
,
13
, pp.
143
154
.10.1016/0955-7997(94)90017-5
5.
Hayami
,
K
.,
2005
, “
Variable Transformations for Nearly Singular Integrals in the Boundary Element Method
,”
Publ. Res. Inst. Math. Sci.
,
41
, pp.
821
842
.10.2977/prims/1145474596
6.
Okon
,
E. E.
, and
Harrington
,
R. F.
,
1982
, “
The Potential Due to a Uniform Source Distribution Over a Triangular Domain
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1401
1419
.10.1002/nme.1620180911
7.
Okon
,
E. E.
, and
Harrington
,
R. F.
,
1982
, “
The Potential Integral for a Linear Distribution Over a Triangular Domain
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1821
1828
.10.1002/nme.1620181206
8.
Okon
,
E. E.
,
1985
, “
Potential Integrals Associated With Quadratic Distributions in a Triangular Domain
,”
Int. J. Numer. Methods Eng.
,
21
, pp.
197
209
.10.1002/nme.1620210202
9.
Nintcheu Fata
,
S
.,
2009
, “
Explicit Expressions for 3D Boundary Integrals in Potential Theory
,”
Int. J. Numer. Methods Eng.
,
78
, pp.
32
47
.10.1002/nme.2472
10.
Carini
,
A.
, and
Salvadori
,
A.
,
2002
, “
Analytical Integrations in 3D BEM: Preliminaries
,”
Comput. Mech.
,
28
, pp.
177
185
.10.1007/s00466-001-0278-7
11.
Salvadori
,
A
.,
2010
, “
Analytical Integrations in 3D BEM for Elliptic Problems: Evaluation and Implementation
,”
Int. J. Numer. Methods Eng.
,
84
, pp.
505
542
.10.1002/nme.2906
12.
Burton
,
A. J.
, and
Miller
,
G. F.
,
1971
, “
The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems
,”
Proc. R. Soc. London A
,
323
, pp.
201
210
.10.1098/rspa.1971.0097
13.
Gradshteyn
,
I.
, and
Ryzhik
,
I. M.
,
1980
,
Table of Integrals, Series, and Products
, 5th ed.,
Academic
,
London
.
14.
Prudnikov
,
A. P.
,
Brychkov
,
Y. A.
, and
Marichev
,
O. I.
,
2003
,
Integraly i Ryady: Tom 1 Elemntarnye Funktsii (Integrals and Series: Volume 1 Elementary Functions)
, 2nd ed.,
Fizmatlit
,
Moscow
.
15.
Brandão
,
M. P.
,
1987
, “
Improper Integrals in Theoretical Aerodynamics: The Problem Revisited
,”
AIAA J.
,
25
(
9
), pp.
1258
1260
.10.2514/3.9775
16.
Shewchuk
,
J. R.
,
1996
, “
Robust Adaptive Floating-Point Geometric Predicates
,”
Proceedings of the Twelfth Annual Symposium on Computational Geometry
(SGC'96), Philadelphia, PA, May 24–26,
Association for Computing Machinery
, New York, pp.
141
150
.10.1145/237218.237337
17.
Carley
,
M.
,
2012
, “
BEM3D: A Free Three-Dimensional Boundary Element Library
,” http://www.paraffinalia.co.uk/Software/bem3d.shtml
18.
Popinet
,
S.
,
2004
, “
GTS: GNU Triangulated Surface library
,” http://gts.sourceforge.net/
19.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
You do not currently have access to this content.